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ABSTRACT 

During seismic event, a series of large curvature demand and plastic hinges due to 

restraint at the anchorage headed reinforcement in reinforced concrete (RC) piles may 

occur along slender piles and at a fixed-head pile foundation system. Limiting the 

curvature ductility demand in the potential plastic hinge region of the pile and 

increasing the displacement ductility demand at the pile head connection produce 

rigorousness of local damage at the pile foundation system. The strength and stiffness of 

the soil-pile system as well as the equivalent plastic hinge length of the pile have 

contributed to the curvature ductility demand. A kinematic model in conjunction with 

the displacement ductility factor to the local curvature ductility demand based on the 

limit state analysis of pile-to-pile cap connections with a particular attention on the 

fixed-head case was theoretically performed. For simplicity purposes, a limit state 

analysis of laterally loaded piles is analytically studied to propose a numerical 

procedure outlined in a flow chart. The flow chart for assessing ductility demand of 

fixed-head pile-to-pile cap connections has identified its application to the pile-to-pile 

cap connection embedded in two different soil conditions. For practical exercises, a 

detail computational procedure was provided in a companion paper.  

 

Keywords: Curvature demand; Ductility demand; Fixed-head; Pile-to-pile cap 
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1. INTRODUCTION 

The seismic response of pile foundation systems due to strong ground motion is mainly 

affected by inertial interaction between superstructure and pile foundation, kinematic 

interaction between foundation soils and piles, and the nonlinear stress-strain behaviour 

of soils and the soil-pile interface (Holmes, 2000). Given this condition, the seismic 

response of fixed-head laterally loaded pile foundation is a very complicated analysis. 

According to Gazetas et al. (1992), Matlock and Reese (1960), the soil surrounding 

piles under such extreme conditions may experience serious problems resulting plastic 

hinges at the pile-to-pile cap connection and buckling along the pile. An evidence 

showed that the main pile supported structures located on soft soils in the earthquake 

prone area produced major demands on the pile foundation systems. Significant effect 

between longer period of soft soil zones, which may potentially amplify ground motions 

and large structures can exacerbate the pile foundation problem (Meymand 1998). 
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Simplified and non-standardized analysis methods are commonly utilized to evaluate 

pile capacity during a severe earthquake event. It has been observed that pile 

performance during earthquakes produces two principal facts emerge; namely, that pile 

foundations influence the ground motions that the superstructure experiences; and the 

pile suffers extreme damage and failure under seismic loading. In fact, well-documented 

seismic soil-pile response based on case histories that record dynamic response is still 

limited. The partial database of measured pile performance during earthquakes produces 

in inadequate data for calibrating and validating the available analytical methods to 

develop the seismic soil-pile-superstructure interaction problems. In general, seismic 

soil-pile-superstructure interaction (SSPSI) is classified into the subsequent interaction 

modes: kinematic, inertial, radiation, and soil-pile. As an example, Gazetas et al. (1992) 

developed a global schematic of the principal characteristics of SSPSI for a single pile, 

as shown in Figure 1. 

 

Figure 1. Schematic of modes of single pile seismic response (Gazetas et al. 1992) 

The system components comprise the superstructure, pile cap, pile, soil and seismic 

energy source. The soil is idealized into near field and far field domains. The modes of 

system interaction incorporate kinematic, inertial, and physical interaction, and radiation 

damping. Since the SSPSI is a major area of geotechnical engineering that directly 

correlates to the structural engineering field, soil-pile interaction was adopted and 

integrated in the current analytical study of pile-to-pile cap connections. For this reason, 

the soil-pile interaction mode has been taken into account in this study with regard to 

model ductility assessment of the pile-to-pile cap connections, whilst other interactions 

are excluded. The following sections present the theoretical soil-pile interaction in 

conjunction with the ductility assessment of the fixed-head pile connections. An 

application of simplified lateral load analyses of a fixed-head pile was briefly described 

in a companion paper (Teguh, 2009).  

The main objective of this paper, therefore, is to analytically model the ductility 

assessment of the pile-to-pile cap connections utilizing a limit states analysis of laterally 

loaded piles with a particular attention on a fixed-head case. This study provides the 

theoretical background and a simplified model of the soil-pile interaction for the 

development of proposed pile-to-pile cap connections.  
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2. LIMIT STATE ANALYSIS 

2.1. Fixed-head Concrete Pile Foundation  

Deep pile-foundation systems supporting heavy superstructures are commonly used 

concrete piles with regard to restrain rotation at the pile head. It should be noted that 

anchoring the pile reinforcement into the pile cap is essential to sufficiently produce 

yield strength in the headed reinforcement. Establishment of a plastic hinge in the single 

pile shaft is a mechanism of ductile performance that may be achieved. At early stage of 

deformation in the fixed-head pile, a plastic hinge is formed at the interface between 

pile head and pile cap, whilst the flexural capacity can be obtained through the 

formation of a secondary, i.e. subgrade hinge. On the other hand, the inelastic 

deformation of a free-head pile forms at the point of maximum moment located in the 

shaft below grade level. The effect of fixity at the pile-to-pile cap connection subjected 

to lateral seismic loads induces a large curvature demand at the pile head, with potential 

for severe damage or failure of the pile. In the analysis of piles, different techniques of 

the sophisticated finite element method proposed by Yang and Jeremic (2002) are 

possibly adopted by utilizing a simpler approach and characterizing the response of the 

pile for a selected number of limit states. According to Song et al. (2005), a laterally 

loaded fixed-head pile can be expressed by a sequential yielding of the pile that occurs 

until a plastic mechanism is fully achieved (Figure 2).  

 

 

 

 

 

 

 

 

 

 

Figure 2. Deformed pile and limit states distribution of a laterally loaded fixed-head 

pile 

A deformed pile group is shown in Figure 2a, while a series of lateral displacement 

beyond the first, second, and ultimate limit states on a single pile are briefly illustrated 

in Figure 2b-c. This involves a concentrated plastic rotation of the hinge, which is 

accompanied by a redistribution of internal forces in the pile. The redistribution 

increases the flexural moment in the non-yielding portion of the pile until the formation 

of the second plastic hinge is developed. The first yield limit state of the pile is 

characterized by a maximum bending moment, Mu, at the pile-to-pile cap connection 

reaching the flexural strength of the pile. A plastic hinge is assumed to form with the 

center of rotation occurring at ground level. The bending moment distribution below the 

plastic hinge diminishes with depth and reverses in direction, leading to a local 
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maximum bending moment, Mmax, at a depth Lm’. Displacement beyond the first yield 

limit state involves a concentrated plastic rotation of the hinge, which is accompanied 

by a redistribution of internal forces in the pile. The redistribution increases the bending 

moment in the non-yielding portion of the pile until the formation of the second plastic 

hinge. The second yield limit state where the second plastic hinge forms at depth, Lm, is 

smaller than the initial depth at the maximum moment, Lm’. As the location of the 

maximum bending moment migrates toward the ground surface, the curvature ductility 

demand then increases due to a smaller lever arm. Continued lateral displacement 

altering the second plastic hinge formation is facilitated by inelastic rotations at both 

plastic hinges until the pile reaches the ultimate limit state. 

In this study, the ultimate limit state is assumed to be associated with flexural failure as 

a consequence of long pile, and as dictated by an ultimate curvature in either the first or 

the second plastic hinge. The identification of these limit states allows a simple 

mechanistic model to be developed so that the lateral stiffness and strength of the soil-

pile system, as well as the curvature ductility demand, can be estimated. Seismic 

performance of fixed-head piles depends on the level of inelastic deformation imposed 

on the pile. Inelastic deformation is generally characterized in terms of curvature 

demand with regard to the stiffness and strength of the soil-pile system, and the plastic 

hinge length of the pile. A kinematic model in conjunction with the displacement 

ductility factor and curvature ductility factor proposed by Song et al. (2005) was mainly 

adopted and is discussed in the following sections for proposing a flow chart to simplify 

a computation. In the limit state derivation, it is considered that the pile is fully 

embedded in cohesive and cohesionless soils (Reese and Van Impe, 2001). 

 

2.2. Lateral stiffness of different soil condition  

2.2.1. Cohesive soils  

According to Poulos and Davis (1980), utilizing the Winkler foundation concept, the 

soil can be replaced with a series of springs, which provides a soil reaction that is 

proportional to the lateral deflection. The stiffness of the soil-spring is assumed to be 

independent of the depth, resulting in a constant horizontal subgrade reaction, kh. For a 

fixed-head pile with an imposed lateral displacement, ∆, at the ground level, the lateral 

stiffness of soil-pile system, Kp, due to the lateral force, V, is written 

as
31.414( / )p p p cK E I R , where EpIp is the effective flexural rigidity of the pile and the 

characteristic length of the pile, Rc, is defined as 4 / hppc kIER  . The lateral deflection, 

∆y1, at the ground level of the 1
st
 yield limit state is determined by equating the flexural 

moment at the pile-to-pile cap connection to the ultimate moment capacity, Mu, of the 

pile, supposing an elasto-plastic moment curvature response is expressed in Eq. (1) as 

follows: 

 
pp

cu
y

IE

RM 2

1                                 (1) 

The lateral force, Vy, at the first plastic hinge written in Eq. (2) is determined by 

multiplying the lateral stiffness, Kp, with the first yield displacement, ∆y1. Whilst the 
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reduced lateral stiffness, Krp, and the corresponding plastic rotation, θ, at the ground 

level after the first yield limit state are expressed in Eq. (3) as follows: 

 1.414 u
y

c

M
V

R
                                (2) 


31.414

p p

rp

c

E I
K

R
  and 

1

1.414

y

cR


 
  for V > Vy and ∆ > ∆y1                      (3) 

An estimation of the modulus of horizontal subgrade reaction, kh, for cohesive soil has 

been proposed by Davisson and Salley (1970) and Poulos and David (1980) as the 

simple expression, kh 67 su, where su is the undrained shear strength of the cohesive 

soil, which is obtained from field tests or site classifications in current building codes 

such as NEHRP (2001) or ATC-40 (1996). 

 

2.2.2. Cohesionless soils 

Studies on the magnitude and distribution of the ultimate soil pressure on piles in 

cohesionless soils had been reported in the past, and an ultimate lateral pressure 

distribution for design was proposed by Broms (1964). The lateral pressure, pu, on the 

pile is then taken to be equal to 3 times the Rankine passive pressure of the soil, pu(x) = 

3 )(' xv pK . The vertical effective overburden stress, )(' xv , is taken as the effective 

unit weight, γ', multiplied by the depth x, and the term pK is the coefficient of passive 

soil pressure and is given by (1 sin ) /(1 sin )pK     . It is noted that the ultimate 

pressure distribution, which varies linearly with depth. The depth at which the second 

plastic hinge forms, Lm, and the ultimate lateral strength of the soil-pile system, Vu, can 

be determined using the ultimate soil pressure distribution, pu(x). The normalized depth 

to the second plastic hinge, defined as * /m mL L D , the normalized ultimate lateral 

strength, defined as * 3/( ' )pu uV V K D , and the normalized flexural strength, defined as 

* 4/( ' )pu uM M K D , for piles in cohesionless soils, are expressed in Eq. 4 and Eq. 5 as 

follows:  

 *
3

' 4
1.26 u

m
p

M
L

K D

 
   

 
                                       (4) 

 

2

* 1.5 m
u

L
V

D

 
  

 
                                   (5) 

 

3. KINEMATIK RELATION 

The severity of local damage is determined by limiting the curvature ductility demand 

in the potential plastic hinge region. The curvature ductility demand, which is different 

for the two plastic hinges, depends on the displacement ductility imposed on the pile. 

Figure 3 can be used to estimate the local inelastic deformation in the critical region, 

where the lateral response of a fixed-head pile is estimated by a tri-linear force-

displacement response, with an initial stiffness, Kp, followed by a reduced stiffness, Krp. 
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The lateral displacements ∆y1 and ∆y2 are used to define the first and second yield limit 

states. The lateral displacement beyond, ∆y2, is characterized by a constant lateral force 

signifying a fully plastic response. The ultimate limit state, defined as the ultimate 

lateral displacement, ∆u, depends on the ductility capacity of the plastic hinges. The 

lateral force-displacement response of the fixed-head pile can be idealized by a bilinear 

elastoplastic response with the equivalent-elastoplastic yield displacement, ∆y. The 

displacement ductility factor, μ∆, is then defined as ratio of the ultimate lateral 

displacement, ∆u, and the equivalent elastoplastic yield displacement, ∆y, where **

p is 

the increased plastic displacement from the stage of second plastic hinge formation to 

the ultimate limit state. 

 

Figure 3. Determination of the displacement ductility factor for fixed-head piles. 

 

Eq. (6) presents the equivalent-elastoplastic yield displacement, ∆y, which is formulated 

based on a ratio of the ultimate lateral strength, Vu, and the initial stiffness, Kp, of the 

bilinear curve: 

 u
y

p

V

K
   and 1

y

y

p

V

K
                                        (6) 

where Vy is the lateral force required to produce the first plastic hinge, and similarly the 

lateral displacement at the second yield limit state, ∆y2 can be defined from the idealized 

trilinear response as denoted in Eq. (7). 

 2

y u y

y

p rp

V V V

K K


                               (7) 

It is clearly shown in Figure 3, from ∆y2 to ∆u produces a rotation of **

p in both plastic 

hinges. The **

p , is defined as a ratio of the **

p , and the depth to the second plastic hinge, 

Lm, or
** ** /p p mL   , where DLL mm

* . To estimate the curvature ductility, the plastic 

rotation is uniformly distributed over the plastic hinge. At the first plastic hinge, 

the
**

p is written as 11

** )( piup L   for 1u ≥ i ≥ y , where i is the curvature in the 

first plastic hinge at the lateral displacement, ∆y2, 1u is the ultimate curvature in the first 

plastic hinge, and Lp1 is the equivalent plastic hinge length for the first hinge condition. 

When the first plastic hinge length to DLpp /11   is normalized and combines with 
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the **

p produces the plastic displacement,   2*

11

** DLmpiup   . Having a relation of 

the ∆y, ∆y2 and **

p provides a relation between the displacement ductility factor and the 

curvature demand in the first plastic hinge. Determining the coefficients 

uyuy VV  // 1  and )/(
2

myy L  , the displacement ductility factor,  , is a 

function of the curvature ductility factor, 1 , in the first plastic hinge as denoted in Eq. 

(8), where yu  /11  and yuii  / is the curvature ductility demand in the first 

plastic hinge at ∆y2. 

 
1

1 ,*
(1 ) ( )

p p

i

rp m

K

K L
 


    


                               (8) 

The kinematic relation in Eq. (8) requires the determination of the curvature 

ductility, i, , which involves the plastic rotation of the first plastic hinge at the lateral 

displacement, ∆y2. The plastic displacement, 12

*

yyp   is associated with a plastic 

rotation, *

p , in the first plastic hinge. Supposing a uniform distribution of plastic 

rotation in the plastic hinge, the curvature ductility factor, *

11 /( )i p y pL    , is a 

function of the plastic rotation, *

p . 

The plastic rotation, *

p , is then determined by the expression of pile head rotation, θ = 

(Δ – Δy1)/1.414Rc for cohesive soils and θ = 2(Δ – Δy1)/3Rn for cohesionless soils. 

Replacing the numerator (∆ – ∆i) with *

p in both equations, the plastic rotation, *

p , can 

be easily written as * * /p p mL   , where the coefficient 1.414 /c mR L  for cohesive 

soils and mc LR /5.1  for cohesionless soils. From the idealized trilinear response, the 

plastic displacement, *

p , is related to the lateral strength and reduced stiffness of the 

soil-pile system as follows: 
* ( / )( ) /p p rp u y pK K V V K   . Since Vy = α Vu 

and 2/u p y y mV K L   , *

p can be rewritten as * 2

1 2( / ) (1 )p y mK K L    . When 

the relation combined with i, , *

p , and *

p , the curvature ductility, i, , can be 

determined: 

 
*

,

1

1 (1 )
p m

i

rp p

K L

K



 


                              (9) 

where *

mL is the normalized depth to the second plastic hinge and λp1 is the normalized 

plastic hinge length of the first hinge. After determining the intermediate curvature 

ductility factor, i, , the ultimate determination of curvature ductility demand, 1 , in 

the first plastic hinge can be defined utilizing Eq. (8) for a given displacement ductility 

factor, μ∆.  

An estimation of the curvature ductility demand in the second plastic hinge is 

essentially required for the damage assessment of fixed-head piles, although the 

curvature ductility demand is possibly smaller than that of the first plastic hinge. In the 
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first plastic hinge, the rotation, **

p , due to the plastic displacement of **

p is similarly 

written in terms of the ultimate curvature demand, 2u , and the equivalent plastic hinge 

length, Lp2, of the second hinge, i.e.: 22

** )( pyup L   for 2u  ≥ y . Knowing the 

combination of **

p  for both soil conditions, it produces the plastic 

displacement, 2*

22

** )( DLmpyup   , where λp2 ≡ Lp2 / D is the normalized plastic 

hinge length of the second hinge. Furthermore the same method for the first plastic 

hinge, the expressions for μ∆, ∆y, i , and **

p  may be written simultaneously to find the 

kinematic relation between the displacement ductility factor, μ∆, and the curvature 

ductility demand, 2 . 

 
2

2*
(1 ) ( 1)

p p

rp m

K

K L



   


                              (10) 

The curvature ductility demand in the second plastic hinge is yu  /22  . It should be 

noted that Eq. (10) is similar to the kinematic relation for the first plastic hinge in Eq. 

(8), except that the plastic hinge length is different and the curvature ductility demand at 

lateral displacement, ∆y2, is equal to unity for the second plastic hinge.  

The ultimate displacement imposed on the pile should be limited in a design 

displacement so that good performance of a pile-supported foundation may be achieved. 

When the design displacement sufficiently causes inelastic deformation in both plastic 

hinges, the curvature ductility demand is likely predicted using the kinematic relation 

between *

uM and pu(x). In the case of a small lateral displacement (∆y1< ∆u<∆y2), only 

one plastic hinge will form at the pile head. To derive the kinematic relation for this 

condition, the displacement ductility factor, ypy  /)( '

1 , is a function of the 

elastoplastic yield displacement, ∆y, and the plastic displacement, '

p ≤
*

p . Similar to 

the *

p , the plastic displacement, mpp L ''  , is correlated to the plastic rotation of the 

first hinge, '

p , and the coefficient, η, for cohesive and cohesionless soils. Therefore the 

displacement ductility factor, μ∆ is written as 1 1 1( / ) ( ( ) /y y p m u y yL L          , 

where the plastic rotation 11

' )( pyup L  and 1u is the ultimate curvature in the first 

plastic hinge. When α = ∆y1/∆y and 
2

myy L are substituted into the μ∆ equation, the 

relation between the displacement ductility factor, μ∆, and curvature ductility factor, 1 , 

for ∆y1 ≤ ∆u ≤ ∆y2  is written as follows 

)1( 1*

1
 






m

p

L
                         (11) 

where yu  /11  . It is observed that the equivalent plastic hinge length for the first 

hinge of the fixed-head pile is adopted from that proposed by Preistly et al. (1996) as 

written in Eq. (12), where fye is the expected yield strength of the reinforcing steel and 

dbl is the diameter of the longitudinal reinforcement of the pile. 

 Lp1 = 0.04 Lm + 0.022 fye dbl   ≥ 0.044 fye dbl               (12) 
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where yu  /11   and  fye is the expected yield strength of the reinforcing steel and dbl 

is the diameter of the longitudinal reinforcement of the pile. The set of equations, 

namely Equations (8), (10) and (11), allows a full range of curvature ductility demand 

for fixed-head piles to be estimated. In a compact matrix form of Eq. (13), the 

displacement ductility factors, μ∆, for the first and second plastic hinges can be rewritten 

as follows: 

1 1

* *

1

1

2 2 2
2* *

0 1

(1 ) 0

p p

m m

p p p

rp m m

L L

K

K L L





 


 


  
 

 





    
      

        
    

                   

                    (13)        

4. RESULTS AND DISCUSSION 

The curvature demand in the yielding region of a pile is related to the equivalent plastic 

hinge length of the pile. Studies of bridge columns or extended pile-shafts have resulted 

in empirical expressions for the equivalent plastic hinge length. In the case of fixed-

head piles, it is reasonable to assume that the length of the first plastic hinge is similar to 

the plastic hinge length of a fixed-based bridge column, as the first plastic hinge of the 

pile forms against a supporting member. In this case, the equivalent plastic hinge length, 

Lp1, of the pile can be assumed to be the same as that of a fixed-based column, except 

that the height of the column is replaced by one-half of the distance to the second plastic 

hinge. This approach is based on the assumption that the bending moment in the upper 

region of fixed-head piles is similar to the reversed moment distribution in a laterally 

loaded column with full fixity at both ends. More specifically, the equivalent plastic 

hinge length for the first hinge of the fixed-head pile can be adopted from that proposed 

by Priestley et al. (1996). The equivalent plastic hinge length of the first plastic hinge, 

however, should not be taken as greater than the pile diameter. For the second plastic 

hinge, the spread of curvature will be more significant than that of the first plastic hinge. 

In this study, the equivalent plastic hinge length for the second plastic hinge is taken 

from the plastic hinge length for extended pile-shafts with a zero above-ground height 

(fully embedded in the soil strata), as proposed by Chai (2002), Chiou and Chen (2010). 

In this case, a plastic hinge length of Lp2 = D, or a normalized plastic hinge length of λp2 

= 1.0, is appropriate for the second plastic hinge. 

A proposed flow chart presented in Figure 4 is useful for the limit state analysis of a pile 

under lateral load for a fixed-head pile case in conjunction with the moment-curvature 

analysis. The first part of the flow chart includes material properties and geometric 

models. Having an input of reinforced concrete pile, a nonlinear cross-sectional analysis 

is performed to compute the moment-curvature. The moment-curvature response of the 

pile section is represented by an elastoplastic response resulting in an equivalent-

elastoplastic yield curvature, ultimate bending moment, ultimate curvature, curvature 

ductility capacity and curvature ductility demand. Considering a reinforced concrete 

pile embedded in cohesive and cohesionless soils in the second part of the flow chart, 

this is then classified according to the NEHRP (2001) and is followed with different 

parameters to be computed. In the last part of the flow chart, using the same formulae, 

the relationship for displacement and curvature ductility demand can be computed.  
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A proposed routine of computer program incorporating the moment-curvature analysis 

was developed to analyze laterally loaded piles required matrix arrays for simplification 

program statements. It is noted that a routine of computer program integrating curvature 

ductility analysis into limit state analysis of laterally loaded pile was developed to take 

account for ductility demand of the fixed pile-to-pile cap connections embedded in two 

different soil conditions. For practical exercises, an application of simplified lateral load 

analyses of a fixed-head pile was briefly described in a companion paper (Teguh, 2009). 

5. CONCLUSIONS 

An analytical model for ductility assessment of the fixed pile-to-pile cap connections 

was summarized to determine kinematic relation between displacement and curvature 

ductility demands resulting a proposed flow chart. The conclusions are drawn based on 

the analytical development of the laterally loaded piles as follows.  

a. Analytical methods have been reviewed to simplify the integration of soil-pile 

interaction into the analysis and design of pile-to-pile cap connections. The limit 

state analysis incorporated the moment-curvature analysis to evaluate the capacity of 

a reinforced concrete pile.  

b. The proposed flow chart of the analysis has significantly helped to compute the 

lateral strength of the soil profile system, kinematic relation, and plastic hinge length. 

The flow chart demonstrates reliable results for a simple application of the pile-to-

pile cap connection embedded in two different soil conditions, cohesive soil and 

cohesionless soil, under a laterally loaded pile.  

c. The effect of soil-structure interaction in design considerations reduces the base-

shear applied to the structure, as well as the lateral forces and overturning moments, 

however it increases lateral displacements due to rocking. The use of a more refined 

soil-foundation interaction model for pile foundations will not necessarily lead to a 

more reliable prediction of foundation behavior, as the accuracy of the prediction 

will depend as much on the reliability of the soil data as upon refinement of the 

model. 
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Figure 4. Flow chart of limit state analysis for a fixed-head laterally loaded pile 

 

Soil profile, undrained shear 

strength, effective unit weight of soft 

soil clay:  SE, Su, γ’ (Soil profile 

classification & properties-Table 

NEHRP and ATC 40) 

Modulus of horizontal 

subgrade reaction, kh = 67 su 

Characteristic length, 

4 / hppc kIER   

 

Critical depth, critical depth 

coefficient: 

  

Soil profile, friction angle, unit 

weight of dense soil: SC, φ, γ’ (Soil 

profile classification & properties-

Table NEHRP and ATC 40) 

Passive soil pressure 

coefficient, 




sin1

sin1




pK  

Modulus of horizontal subgrade 

reaction, nh (Subgrade 

coefficients of cohesionless 

soils (ATC 32) 

Characteristic length, 

5 / kppn nIER   

A1 A2 

Material properties & geometries: 

concrete, steel, and soil 

Nonlinear cross-sectional 

moment-curvature analysis 

1. Equivalent-elastoplastic yield curvature, Øy 

2. Ultimate bending moment, Mu 

3. Ultimate curvature, Øu 

4. Curvature ductility capacity, (μØ)cap  

5. Curvature ductility demand, μØ2 

Cohesive soils Cohesionless soils 

 Start 



ISSN 2541-223X 

                                                                                                                                                  

197 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Flow chart of limit state analysis for a fixed-head laterally loaded pile 

(continued) 
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Figure 4. Flow chart of limit state analysis for a fixed-head laterally loaded pile 

(continued) 

 

Yes 

r

m

mu

L
LV



2*

2
9** 2 

 

rmL *  

Actual lateral strength, 

Vu=
*

uV Su D
2 

rmu LV 
2
9** 11   

No 

 B1 

B2 

Equivalent elastoplastic yield displacement,  

 

Lateral displacement at 2
nd

 yield limit state,  

 

Coefficients: 
u

y

V

V
 and 

2

my

y

L



  

Coefficient for cohesive soil,  

m

c

L

R2
  

Coefficient for cohesionless soil,  

m

n

L

R
5.1  

C 



ISSN 2541-223X 

                                                                                                                                                  

199 

 

blyep dfL 044.01   

 

Figure 4. Flow chart of limit state analysis for a fixed-head laterally loaded pile 

(continued) 
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