

EVALUATION OF MODEL DEVELOPMENT OF URBAN ECO-DRAINAGE IN REGION SCALE

Sih Andayani^{1*}, Bambang. E. Yuwono¹

¹Department of Civil Engineering, Faculty of Civil Engineering and Planning, Trisakti University, Jakarta, Indonesia

ABSTRACT

Drainage problems in urban area have been even more complicated and need to be handled immediately. People in urban areas often experience flood and spatial puddles of water in rainy season lately, drought in dry season, as well as pollution on drainage water by liquid and solid waste (i.e. garbage). These conditions may disturb their activities and inflict them both moral and financial loss. The flood occurs because the river overflows, while puddle occurs because the flow of surface water that comes from the local rain water and wastewater from the surrounding area could not be accommodated by the drainage network. Drought occurs because of declining supplies of surface water and groundwater at the time of the dry season. Moreover, drainage water pollution occurs because of the lack of both Government and community roles. The problems of flooding, puddles, and drought in urban areas, which have been described previously cannot be solved with the old concept of urban drainage system, they can be overcome with the new concept instead. The old concept of urban drainage is to drain rainwater runoff into a nearby channel or water body as soon as possible, as for the new concept of drainage system is an Urban Eco-Drainage System where runoff rainwater will partially be detained first in the headwater, from then it will partially be permeated into the ground. The new concept of drainage system is also integrated with liquid and solid waste management, which is known as eco-drain. Therefore, eco-drainage system is expected to gain benefit for the environment sustainability. Guidelines and related researches on urban drainage performance assessment are available to access, as well as the concept of urban eco-drainage. In fact, identification process has been done on allegedly factors which can be used as key factors in evaluating whether an urban drainage system in one area has been in accordance with ecological concept of drainage system. From the previous research, it concluded that the key factors are: (1) technical management, and (2) non-technical management. Technical management consists of five key factors, such as (1) infiltration system, (2) drainage channel system, (3) complementary building systems, (4) storage system and (5) pump system. Non-technical management consists of two key factors, such as (1) the role of Government and (2) community participation. At this stage, the research aimed to acquire the indicator and the key factors that are most influential in the Eco-Drainage System. Analysis tool used for that purpose is the Partial Least Square (PLS) through the SMART PLS application version 3.00. The best factor in establishing Technical Management variable is the Storage System with the highest Significance Weight of 82.192. The best indicator in establishing the Non-Technical Management variable is the Government role with the highest Weight significance of 39,460. The best indicator in establishing variable on Eco-Drainage System Key Factor is Technical Management with the highest Weight significance of 39,460.

Keywords : Drainage; Eco-drain; Evaluation; Factor; Key; Model

^{*}Corresponding author's email: <u>sandajani23@gmail.com</u>, <u>bey_trisakti@yahoo.com</u>

1. INTRODUCTION

Drainage problems in urban area have been even more complicated and need to be handled immediately. People in urban areas often experience flood and spatial puddles of water in rainy season lately, drought in dry season, as well as pollution on drainage water by liquid and solid waste (i.e. garbage). These conditions disturb their activities and inflict them both moral and financial loss. The flood occurs because the river overflows, while puddle occurs because the flow of surface water that comes from the local rain water and wastewater from the surrounding area could not be accommodated by the drainage network. Drought occurs because of declining supplies of surface water and ground water at the time of the dry season. Moreover, drainage water pollution occurs because of the lack of both Government and community roles. The problems of flooding, puddles, and drought in urban areas, which has been described above cannot be solved with the old concept of urban drainage system, but can be overcome with the new concept.

The old concept of urban drainage is to drain rainwater runoff into a nearby channel or water body as soon as possible, as for the new concept of drainage system is an Urban Eco-Drainage System where runoff rainwater will partially be detained first in the headwater, from then it will partially be permeated into the ground. The new concept of drainage system is also integrated with liquid and solid waste management, which is known as eco-drain.

Therefore, eco-drainage system is expected to gain benefit for the environment sustainability. Guidelines and related researches on urban drainage performance assessment are available to access, as well as the concept of urban eco-drainage. In fact, identification process has been done on allegedly factors which can be used as key factors in evaluating whether an urban drainage system in one area has been in accordance with ecological concept of drainage system.

In the early result of research, Andayani and Endro Yuwono (2015) have determined the indicators and key factors which can be used to evaluate whether an urban drainage system in one area has been in accordance with ecological concept of drainage system. Those results are acquired from review study on the previous researches as well as guidelines published by the Ministry of Public Works.

To outline the aspects which allegedly can describe whether an urban eco-drainage system of region scale has been in accordance with ecological concept, are: (1) technical management, and (2) non-technical management. Technical management consists of five key factors, such as (1) infiltration system, (2) drainage channel system, (3) complementary building systems, (4) water basin system, and (5) water pump system. Non-technical management consists of two key factors, such as (1) government participation and (2) community role.

However, the research result has not been included the testing phase to test whether those factors are valid and they have not been brought in the weighing value of each factor. So the proposed research question was about what factors and how heavy is each of key factor that can be used in the evaluation model of region-scaled urban ecodrainage.

2. METHODOLOGY/ EXPERIMENTAL

Methods used in this research are:

- 1. Developing the questionnaire to test all factors and indicators which allegedly can describe whether an urban eco-drainage system of region scale has been in accordance with ecological concept or not.
- 2. Conducting a comprehensive survey by spreading questionnaires to all related parties to get the determining factors of urban eco-drainage system performance. Related parties who were involved in this research are various government agencies related to urban drainage management, industrial society that utilizes drainage channels (the industrial community, the public), urban drainage observers (profession bodies, NGOs), and universities.
- 3. Conducting test on the determining factors of urban eco-drainage system performance at region scale, so both factors and indicator are obtained in order to identify which urban drainage has been in accordance with ecological concept by using Partial Least Square Analysis.

3. RESULTS

At this stage, the research was aimed to acquire the indicator and the key factors that are most influential in the Eco-Drainage System. Analysis tool used for that purpose is the Partial Least Square (PLS) through the SMART PLS application version 3.00. Another method used in this research is Confirmatory Factor Analysis. By using this tool, existing indicators can be proven that they are able to explain a variable. The purpose of this measurement model is to describe how well the indicators in this research can be used as a measurement for the latent variables.

Evaluation on validity of measurement model can be done by looking at the loading factors estimation results. A variable can be labeled as valid (to its latent variable) when its standard loading factor (LF) is higher or equal to $0.50 (\ge 0.50)$; and/or T-value of loading factor is bigger than the critical value (≥ 1.96). Moreover, evaluation on reliability of measurement model in PLS can be done by using Average Variance Extracted (AVE) higher or equal to 0.50 and Composite Reliability (CR) higher or equal to 0.70.

In order to find out which factors have more important role, it can be done by looking at the highest Loading Factor score, as for the most decisive indicator can be seen from the highest Weight Significance score. The recapitulation of evaluation results on validity and reliability evaluation can be seen in Table 1 and 2.

		Conv	vergent Val	idity		
Indicator	Factor	LF≥ 0.5=valid		AVE≥	0.5=valid	
		LF	Notes	Rank	AVE	Notes
-	A1.1	0.361	Not valid	7		32
	A1.2	0.462	Not valid	6		
	A1.3	0.703	Valid	5		
Infiltra	A1.4	0.851	Valid	2	0.462	Not valid
tion System (A1)	A1.5	0.845	Valid	3	0.402	Not valla
	A1.6	0.899	Valid	1		
	A1.7	0.781	Valid	4		
	A1.8	0.028	Not valid	8		
	A2.1	0.429	Not valid	7	0.383	Not valid
Drainage Channel System (A2)	A2.2	0.552	Valid	6	0.385	woi valla

 Tabel 1. Stage 1 of Measurement Model Evaluation (1st Order Outer Model) Before
 Elimination

			vergent Val			
Indicator	Factor		F <u>≥ 0.5</u> =vali			0.5=valid
		LF	Notes	Rank	AVE	Notes
	A2.3	0.560	Valid	5		
	A2.4	0.743	Valid	3		
	A2.5	0.702	Valid	4		
	A2.6	0.825	Valid	1		
	A2.7	0.755	Valid	2		
	A2.8	0.277	Not valid	8		
-	A3.1	0.378	Not valid	7	-	
	A3.2	0.708	Valid	5	200	-
	A3.3	0.775	Valid	3	1.10	
Comple	A3.4	0.825	Valid	2	0.486	Not valid
entary Building System (A3)	A3.5	0.738	Valid	4	0.700	1101 VUIIU
6	A3.6	0.850	Valid	1		
	A3.7	0.527	Valid	6		
	A4.1	0.244	Not valid	8		
	A4.2	0.363	Not valid	7		
Storage System	A4.3	0.666	Valid	4		• 🛦
	A4.4	0.890	Valid	1	0 410	Madaralid
(A4)	A4.5	0.634	Valid	5	0.418	Not valid
	A4.6	0.821	Valid	3		
	A4.7	0.836	Valid	2		
	A4.8	0.474	Not valid	6		
	A5.1	0.681	Valid	4		
	A5.2	0.500	Not valid	6		
	A5.3	0.568	Valid	5		
	A5.4	0.781	Valid	2	0.004	
Pump System (A5)	A5.5	0.491	Not valid	7	0.394	Not valid
	A5.6	0.770	Valid	3		
	A5.7	0.827	Valid	1	0	(
	A5.8	0.291	Not valid	8		1
	B6.1	0.487	Not valid	11		
	B6.2	0.765	Valid	2	-	
	B6.3	0.788	Valid	1		
	B6.4	0.613	Valid	7		
	B6.5	0.366	Not valid	13		
-	B6.6	0.304	Not valid	14		3
	B6.7	0.757	Valid	3		
Role of Government (B6)	B6.8	0.595	Valid	8	0.486	Not valid
	B6.9	0.569	Valid	9	~ _	
	B6.10	0.645	Valid	6		
	B6.11	0.720	Valid	4		
	B6.12	0.72 0.549	Valid Valid	4 10		
		11 1/1/19	v ann		1	
	B6.13 B6.14	0.39	Not valid	12		

<u>ð</u>

571

		Conv	vergent Val	idity		
Indicator	Factor	Factor LF≥ 0.5=valid				0.5=valid
		LF	Notes	Rank	AVE	Notes
	B7.1	0.717	Valid	3		
	B7.2	0.627	Valid	7	0.504	Valid
Community Douti sinction	B7.3	0.655	Valid	5		
Community Participation	B7.4	0.815	Valid	2		
(B7)	B7.5	0.819	Valid	1		
	B7.6	0.637	Valid	6		
	B7.7	0.689	Valid	4	÷	

Table 2 Stage 1 of Reliability Evaluation (1st OrderOuter Model) Before Elimination

		Composi	te Reliability		
Variabel Latent	Indicator	CR≥0.7=Reliable			
		CR	Notes		
	Infiltration System (A1)	0.847	Reliable		
Tashnisal	Drainage Channel System (A2)	0.819	Reliable		
Technical – Management (A) –	Complementary Building System (A3)	0.862	Reliable		
Management (A)	Storage System (A4)	0.834	Reliable		
	Pump System (A5)	0.827	Reliable		
Non-Technical	The Role of Government (B6)	0.867	Reliable		
Management (B)	Community Participation (B7)	0.890	Reliable		

According to Table 1 and 2 above, we can know that several Loading Factor (LF) scores are ≥ 0.50 except on factors like A1.1, A1.2, A1.8, A2.1, A2.8, A3.1, A4.1, A4.2, A4.8, A5.2, A5.5, A5.8, B6.14, B6.15, B6.5, B6.6, B6.9, and most of indicators have AVE scores < 0.50.

It can be concluded that validity of all manifest variables towards latent variable is not good. As for reliability calculation, results show that all Composite Reliability (CR) results are ≥ 0.70 . Because there are several factors which stated as invalid, the testing was repeated by considering some factors which are considered inappropriate to be followed up in the next research.

Upon this matter, the researcher considered to remove factors which have low weight factor value or do not reach good validity standards. The researcher reduced measurement indicators by removing the factors that tilted italics until the retesting results produced LF, AVE and CR value, which are in accordance with the standard of measurement model evaluation criteria. Analysis results in detailed are given in Table 3 and 4.

Table 3. Stage 1 of Measurement Model Evaluation (1st Order Outer Model) After

Elimination)								
		Conv	vergent Va	lidity				
Indicator	Factor	L	F≥ 0.5=val	AVE≥0.5=valid	1			
		LF	Notes	Rank	AVE	Notes		
Infiltration	A1.3	0.668	Valid	5				
System	A1.4	0.873	Valid	2	0.696	Valid		
(A1)	A1.5	0.857	Valid	3				

 \overline{A}_{1}

			vergent Va			
Indicator	Factor	L	F≥ 0.5=val	id	AVE≥0.5=vali	d
		LF	Notes	Rank	AVE	Notes
	A1.6	0.916	Valid	1		
	A1.7	0.834	Valid	4		
Drainaga	A2.3	0.510	Valid	5		
Drainage Channel	A2.4	0.742	Valid	3		
System	A2.5	0.721	Valid	4	0.541	Valid
(A2)	A2.6	0.841	Valid	1		
(A2)	A2.7	0.817	Valid	2		
	A3.2	0.681	Valid	5		
Complementary	A3.3	0.776	Valid	3		
Building	A3.4	0.836	Valid	2	0.557	Valia
System	A3.5	0.756	Valid	4	- 0.557	Valid
(A3)	A3.6	0.854	Valid	1]	
	A3.7	0.526	Valid	6	1	
	A4.3	0.611	Valid	4		
Glasse G	A4.4	0.895	Valid	1	1	
Storage System	A4.5	0.677	Valid	5	0.616	Valid
(A4)	A4.6	0.830	Valid	3		· 🛦
	A4.7	0.870	Valid	2		
	A5.1	0.659	Valid	4		13
D	A5.3	0.519	Valid	5	1	
Pump System	A5.4	0.834	Valid	2	0.567	Valid
(A5)	A5.6	0.810	Valid	3	_	
	A5.7	0.882	Valid	1		
	B6.2	0.769	Valid	2	(A)	
	B6.3	0.782	Valid	1		6
100	B6.4	0.646	Valid	7		
The Role Of	B6.7	0.759	Valid	3		
Government	B6.8	0.581	Valid	8	0.521	Valid
(B6)	B6.9	0.711	Valid	9		. und
(_ 0)	B6.10	0.733	Valid	6		R.
	B6.11	0.766	Valid	4		
	B6.12	0.700	Valid	4		
100	B0.12 B7.1	0.720	Valid	3		
	B7.1 B7.2	0.586	Valid	7		1
Community	B7.2 B7.3	0.380	Valid	5		1
Participation	B7.3 B7.4	0.818	Valid	2	0.520	Valid
(B7)	B7.4 B7.5	0.664	Valid	1	0.520	v and
(D /)		0.699	Valid	6		
	B7.6			6		
	B7.7	0.705	Valid	4		

		Composi	ite Reliability
Variable Latent	Indicator	CR≥0.	7=Reliable
	Infiltration System (A1)Technical magement (A)Complementary Building System (A2)Storage System (A4)Pump System (A5)	CR	Notes
Technical	Infiltration System (A1)	0.919	Reliable
	Drainage Channel System (A2)	0.852	Reliable
	Complementary Building System (A3)	0.881	Reliable
Management (A)	Storage System (A4)	0.887	Reliable
	Pump System (A5)	0.864	Reliable
Non-Technical	The Role of Government (B6)	0.896	Reliable
Management (B)	Community Participation (B7)	0.882	Reliable

Table 4 Stage 1 of Reliability Evaluation (1st Order Outer Model) After Elimination

Based on Table 3 and 4 above, it can be seen that all Loading factor values are ≥ 0.50 , and all AVE values are ≥ 0.50 . Therefore, it can be concluded that validity of all manifest variables to their latent variables are good. The reliability measuring result shows that all latent variables have good reliability result.

4. DISCUSSION

The key factor which dominantly contributes to latent construct is as follows:

- 1. Factor that is good in establishing **InfiltrationSystem** Indicator (A1) is A1.6 (sediment handling in infiltration system) with the highest loading factor of **0.916**.
- 2. Factor that is good in establishing **Drainage Channel System** Indicator (A2) is A2.6 (sediment handling in drainage system) with the highest loading factor of **0.841**.
- 3. Factor that is good in establishing **Complementary Building Systems** Indicator (A3) is A3.6 (Wild vegetation handling on the complementary building) with the highest loading factor of **0.854**.
- 4. Factor that is good in establishing **Storage Systems** Indicator (A4) is A4.4 (Waste handling in reservoir building) with the highest loading factor of **0.895**.
- 5. Factor that is good in establishing **Pump Systems** Indicator (A5) is A5.7 (Wild vegetation handling in pump building) with the highest loading factor of **0.882**.
- 6. Factor that is good in establishing **Government Role** Indicator (**B6**) is **B6.3** (Determination of O & P Workforce Amount) with the highest loading factor of **0.782**.
- 7. Factor that is good in establishing **Community Participation** Indicator (**B7**) is **B7.3** (Community Participation in Reporting of any Puddles) with the highest loading factor of **0.828**.

Variable Latent	Variable Manifest	Significance Weight	Rule of Thumb	Notes	Rank
	Infiltration System (A1)	3.853	1.96	Valid	5
Technical Management (A)	Drainage Channel System (A2)	11.957	1.96	Valid	4
	Complementary Building System (A3)	15.271	1.96	Valid	3

Table 5 Stage 2 of Measurement Model Evaluation (2nd Order Outer Model)

Variable Latent	Variable Manifest	Significance Weight	Rule of Thumb	Notes	Rank
	Storage System (A4)	82.192	1.96	Valid	1
	Pump System (A5)	15.781	1.96	Valid	2
Non Technical	The Role of Government (B6)	64.276	1.96	Valid	1
Management (B)	Community Participation (B7)	37.153	1.96	Valid	2

According to Table 5 above, it can be seen that all Weight Significance values are \geq 1.96. It leads to a conclusion that validity of all manifest variables towards their latent variables is good. The best indicators in establishing Technical management variable (A) are **Storage System (A4)** with the highest Weight Significance of **82.192**. The best indicators in establishing Non-Technical management variable (B) are **Government Role (B6)** with the highest Weight Significance of **64.276**.

Variable Latent	Variable Manifest	Significance Weight	Rule of Thumb	Notes	Rank
Key Factor of Urban	Technical Management (A)	39.460	1.96	Valid	1
Eco- Drainage	Non-Technical Management (B)	18.550	1.96	Valid	2

Tabel 6 Stage 3 of Measurement Model Evaluation (3rd Order Outer Model)

According to Table 6 above, it can be seen that all Weight Significance values are \geq 1.96. It leads to a conclusion that validity of all manifest variables towards their latent variables is good. The best indicator in establishing the variable of Urban Eco-Drainage System Key Factor is **Technical Management** (A) with the highest Weight Significance of **39.460**.

Thus statistical-based recommendation stated that when the authorities want to improve the result of Eco-Drainage System value, then they can prioritize the increase of **Technical Management (A).**

The reasons to prioritize that variable is because it was statistically stated to have the highest Weight value of **39.460**, which the best indicator in need of improvement is **Management Techniques** variable (A) with the indicator of **Storage System** (A4) with the highest Significance Weight value of **82.192**. As for dominant key factor in giving contribution to **Storage System** (A4) is A4.4 factor (Waste handling in reservoir building) with the highest loading factor of **0.895**. See also Figure 1 and 2.

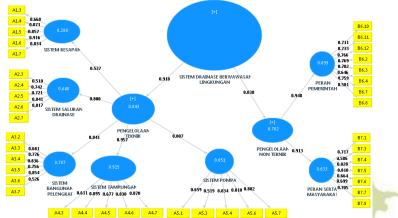


Figure 1 Diagram of Stage 1 of Measurement Model Evaluation (1st Order Outer Model)

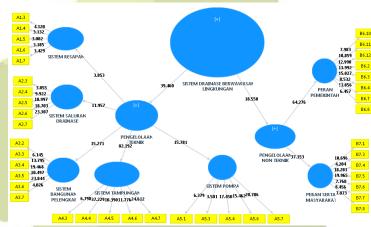


Figure 2 Diagram of *Significance Weight* of Stage 2 and 3 of Measurement Model Evaluation

5.CONCLUSION

It can be concluded that the validity of all the manifest variables to the latent variable is good. The most dominant key factors in contributing to the latent construct are as follows:

- 1. The best factor in establishing an **Infiltration System** indicator (A1) is A1.6 (sediment handling in the infiltration system) with the highest loading factor of **0.916.**
- 2. The best factor in establishing a **Drainage Channels System** indicator (A2) is A2.6 (sediment handling in the drainage channels) with the highest loading factor of **0.841.**
- 3. The best factor in establishing a **Complementary Building System** indicator (A3) is A3.6 (Wild vegetation handling on the complementary building) with the highest loading factor of 0.854.
- 4. The best factor in establishing a **Storage Systems** indicator (A4) is A4.4 (Waste handling on the complementary building) with the highest loading factor of **0.895**.
- 5. The best factor in establishing a **Pump Systems** indicator (A5) is A5.7 (Wild vegetation handling on the pump systems) with the highest loading factor of **0.882**.

- 6. The best factor in establishing **Government Role** indicator (**B6**) is **B6.3** (Determination of O & P Workforce Amount) with the highest loading factor of **0.782.**
- 7. The best factor in establishing **Community Participation** indicator (**B7**) is **B7.3** (Community role in reporting of any puddles) with the highest loading factor of **0.828.**

The best factor in establishing Technical Management (A) variable is the **Storage System (A4)** with the highest Significance Weight of **82.192.** The best indicator in establishing the Non-Technical Management (B) variable is the **Government role (B6)** with the highest Weight significance of **39.460**.

The best indicator in establishing variable on Eco-Drainage System Key Factor is **Technical Management (A)** with the highest Weight significance of **39.460**.

When the authorities want to improve the result of Eco-Drainage System value, then they can prioritize the waste management on the Reservoir building. Statistically, **Technical Management (A)** variable has the highest Weight significance of **82.192** with the key factor which dominantly gives contribution to **Reservoir System (A4)** is waste management on reservoir building (A4.4) factor with the highest loading factor of **0.895**.

6. REFERENCES

- Andayani, Yuwono, Soekrasno, (2012), "Operation and Maintenance Role in Evaluation Urban Drainage Service Level", Civil Engineering Journal, volume III number 1, March 2012, ISSN 2089-9513.
- Apriliana, (2015), "Evaluasi Kinerja Jaringan Drainase Kelurahan Gandekan Jebres Surakarta (Sub Sistem Kali Pepe Hilir)", Skripsi.
- Brata, Kamir, (2008), "Lubang Resapan Biopori", Penerbit Penebar Swadaya.
- Budhiarto, (2008), "Proses Pengembangan Sistem Pengelolaan Drainase Secara Terpadu Berwawasan Lingkungan".
- Departemen Pekerjaan Umum, (1990), "Tata Cara Perencanaan Teknik Sumur Resapan Air Hujan Untuk Lahan Pekarangan", SK SNI T-06-1990-F.
- Departemen Pekerjaan Umum, (1990), "Tata Cara Perencanaan Drainase Perkotaan", SK SNI T-07-1990-F, 1990.
- Departemen Pekerjaan Umum, (2008), "Panduan Penilaian Kinerja Pemerintah Daerah Bidang Pekerjaan Umum".
- Irma Suryanti, IN.Norken, IG.B.Sila Dharma, (2013), "Kinerja Sistem Jaringan Drainase Kota Semarapura di Kabupaten Klungkung", Jurnal Spektran Vol.1 No.1, Januari 2013.

Kementerian Pekerjaan Umum, Direktorat Jenderal Cipta Karya, (2012), "Panduan Drainase Berwawasan Lingkungan", 2012.

Kementerian Pekerjaan Umum, (2010), "Peraturan Menteri Pekerjaan Umum Nomor : 14/PRT/M/2010 tanggal 25 Oktober 2010".

- Kementerian Pekerjaan Umum, Direktorat Jenderal Cipta Karya, Direktorat Pengembangan Penyehatan Lingkungan Perumahan, (2012), "Sistem Drainase Perkotaan Jilid I-IV".
- Muttaqin, (2007), Yusuf "Kinerja Sistem Drainase Yang Berkelanjutan Berbasis Partisipasi Masyarakat (Studi Kasus di Perumahan Josroyo Indah Jaten Kabupaten Karanganyar)", Media Teknik Sipil, Juli 2007.

- Kusnaedi, (2011), "Sumur Resapan Untuk Pemukiman Perkotaan dan Pedesaan", Penerbit Penebar Swadaya, Jakarta.
- Pasaribu, Dominggo, (2007), "Evaluasi Pengelolaan Drainase Kota Medan Secara Terpadu", Tesis.
- Perpustakaan Kementerian Pekerjaan Umum, (2015), "Drainase Berwawasan Lingkungan,"http://pustaka.pu.go.id/new/artikel-detail.asp?id=331 (diakses 6 Maret 2015)
- Suripin, (2004) "Sistem Drainase Perkotaan Yang Berkelanjutan", Penerbit Andi, Yogyakarta.

Syahrial, (2007), "Evaluasi Pengelolaan Sistem Drainase Kota Padang", Tesis.