The Evaluation Of Moisture Sensitivity Of Ethylene-Vinyl Acetate (Eva) Modified Hot And Warm Mix Asphalt Mastic

C G Daniel[1]*, J Widjajakususma1, M I Azrena1

1Department of Civil Engineering, Pelita Harapan University, Indonesia

DOI: https://doi.org/10.20885/icsbe.vol4.art1

 

 

ABSTRACT

This study aims to evaluate the effect of applying ethylene-vinyl acetate (EVA) using the dry mixing method on the mechanical properties of the HMA and WMA mixtures on the mastic scale against moisture damage given various polymer contents; 2%, 5%, 6%, and 8% of bitumen weight. The tensile strength of dry hot and warm polymer-modified bituminous mastic was improved by 40% and 100% relative to the control mix, respectively, from the dosage of 0.6% EVA. Moreover, the fracture energy depicted a similar trend, with the gaps becoming 34% and 136%. Both parameters have shown increasing increment up to the dosage of 6%, beyond which the values declined. In contrast, the tensile strength ratio (TSR) and fracture energy ratio of the hot mastic mix was higher than the warm mix, while the increment of the ratio to control mix was less than that of the dry specimens. This indicates an insignificant influence of polymer on the adhesion bonding in the mastic upon being subjected to the moisture effect, especially in the warm mix. However, its impact on hot asphalt mastic specimens was still acceptable. The dosage of 6% can be depicted to give the best outcome in this study.

Keywords: Moisture Sensitivity, Ethylene-Vinyl Acetate, Hot Mix, Warm Mix, Asphalt Mastic

[1]* Corresponding author’s email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol4.art1

 

REFERENCES

[1]       L. Brasileiro, F. Moreno-Navarro, R. Tauste-Martínez, J. Matos, and M. del C. Rubio-Gámez, “Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review,” Sustainability (Switzerland), vol. 11, no. 3, Jan. 2019, doi: 10.3390/su11030646.

[2]       N. Dishovsky and M. Mihaylov, ELASTOMER-BASED COMPOSITE MATERIALS Mechanical, Dynamic, and Microwave Properties and Engineering Applications. 2018.

[3]       P. K. Mallick, “Thermoplastics and thermoplastic-matrix composites for lightweight automotive structures,” 2010. doi: 10.1016/B978-1-84569-463-0.50004-3.

[4]       J. G. Drobny, Handbook of Thermoplastic Elastomers. William Andrew, 2014.

[5]       L. Wang, L. Zhang, Y. Shi, and Z. Wang, “Thermoplastic Elastomers Based on Ethylene-vinyl Acetate Copolymer and Waste Nitrile Butadiene Rubber Powder Blends Compatibilized by Chlorinated Polyethylene,” Journal of Macromolecular Science, Part B: Physics, vol. 57, no. 4, pp. 305–316, Apr. 2018, doi: 10.1080/00222348.2018.1460975.

[6]       Hanna Dodiuk, Handbook of Thermoset Plastics. William Andrew, 2014.

[7]       S. M. Soleimani, A. Faheiman, and Z. Mowaze, “The Effects of Using Crumb Rubber Modified Binder in an Asphalt Pavement,” American Journal of Engineering and Applied Sciences, vol. 13, no. 2, pp. 237–253, Feb. 2020, doi: 10.3844/ajeassp.2020.237.253.

[8]       M. A. Bilema et al., “Moisture Sensitivity of Crumb Rubber Modified Modifier Warm Mix Asphalt Additive for Two Different Compaction Temperatures,” in IOP Conference Series: Earth and Environmental Science, Apr. 2018, vol. 140, no. 1. doi: 10.1088/1755-1315/140/1/012072.

[9]       H. Wang, X. Liu, M. van de Ven, G. Lu, S. Erkens, and A. Skarpas, “Fatigue performance of long-term aged crumb rubber modified bitumen containing warm-mix additives,” Construction and Building Materials, vol. 239, Apr. 2020, doi: 10.1016/j.conbuildmat.2019.117824.

[10]     H. Wang, X. Liu, P. Apostolidis, and T. Scarpas, “Rheological behavior and its chemical interpretation of crumb rubber modified asphalt containing warm-mix additives,” Transportation Research Record, vol. 2672, no. 28, pp. 337–348, Jan. 2018, doi: 10.1177/0361198118781376.

[11]     N. Lushinga, L. Cao, Z. Dong, C. Yang, and C. O. Assogba, “Performance Evaluation of Crumb Rubber Asphalt Modified with Silicone-Based Warm Mix Additives,” Advances in Civil Engineering, vol. 2020, 2020, doi: 10.1155/2020/4840825.

[12]     K. A. Ghuzlan, G. G. Al-Khateeb, and Y. Qasem, “Rheological Properties of Polyethylene-Modified Asphalt Binder.”

[13]     S. Sharma, S. Sharma, and N. Upadhyay, “Composition Based Physicochemical Analysis of Modified Bitumen by HDPE/LDPE,” Oriental Journal of Chemistry, vol. 35, no. 3, pp. 1167–1173, Jun. 2019, doi: 10.13005/ojc/350336.

[14]     F. M. Nejad, K. Naderi, and R. Zarroodi, “Effect of cross-linkers on the performance of polyethylene-modified asphalt binders,” Proceedings of Institution of Civil Engineers: Construction Materials, vol. 170, no. 4, pp. 186–193, Aug. 2017, doi: 10.1680/jcoma.16.00021.

[15]     C. Fuentes-Audén et al., “Evaluation of thermal and mechanical properties of recycled polyethylene modified bitumen,” Polymer Testing, vol. 27, no. 8, pp. 1005–1012, 2008, doi: 10.1016/j.polymertesting.2008.09.006.

[16]     E. S. Okhotnikova, I. N. Frolov, Y. M. Ganeeva, A. A. Firsin, and T. N. Yusupova, “Rheological behavior of recycled polyethylene modified bitumens,” Petroleum Science and Technology, vol. 37, no. 10, pp. 1136–1142, May 2019, doi: 10.1080/10916466.2019.1578796.

[17]     Z. Xie and J. Shen, “Effect of cross-linking agent on the properties of asphalt rubber,” Construction and Building Materials, vol. 67, no. PART B, pp. 234–238, Sep. 2014, doi: 10.1016/j.conbuildmat.2014.03.039.

[18]     T. Mandal, R. Sylla, H. U. Bahia, and S. Barmand, “Effect of cross-linking agents on the rheological properties of polymer-modified bitumen,” Road Materials and Pavement Design, vol. 16, pp. 349–361, May 2015, doi: 10.1080/14680629.2015.1029683.

[19]     P. Ahmedzade et al., “Use of maleic anhydride grafted recycled polyethylene treated by irradiation in bitumen modification,” Jan. 2017. doi: 10.14311/ee.2016.155.

[20]     M. Porto, P. Caputo, V. Loise, S. Eskandarsefat, B. Teltayev, and C. O. Rossi, “Bitumen and bitumen modification: A review on latest advances,” Applied Sciences (Switzerland), vol. 9, no. 4. MDPI AG, Feb. 20, 2019. doi: 10.3390/app9040742.

[21]     V. v. Yadykina, S. N. Navolokina, and A. M. Gridchin, “The dependence of the modified bitumen properties on the amount of vinyl acetate in the sevilen composition,” in Materials Science Forum, 2020, vol. 974 MSF, pp. 175–180. doi: 10.4028/www.scientific.net/MSF.974.175.

[22]     I. B. Joohari and F. Giustozzi, “Effect of different Vinyl-Acetate contents in hybrid SBS-EVA modified bitumen 1.”

[23]     A. Yuliestyan, A. A. Cuadri, M. García-Morales, and P. Partal, “Selection of ethylene-vinyl-acetate properties for modified bitumen with enhanced end-performance,” Rheologica Acta, vol. 57, no. 1, pp. 71–82, Jan. 2018, doi: 10.1007/s00397-017-1057-5.

[24]     N. Saboo and P. Kumar, “Optimum Blending Requirements for EVA Modified Binder,” in Transportation Research Procedia, 2016, vol. 17, pp. 98–106. doi: 10.1016/j.trpro.2016.11.065.

[25]     Tony. McNally and Petra. Pötschke, Polymer modified bitumen: Properties and Characterisation. Woodhead Pub, 2011.

[26]     N. Kunanusont, B. Sangpetngam, and A. Somwangthanaroj, “Asphalt incorporation with ethylene vinyl acetate (Eva) copolymer and natural rubber (nr) thermoplastic vulcanizates (tpvs): Effects of tpv gel content on physical and rheological properties,” Polymers (Basel), vol. 13, no. 9, May 2021, doi: 10.3390/polym13091397.

[27]     R. K. Padhan, A. A. Gupta, and A. Sreeram, “Effect of cross-linking agent on ethylene vinyl acetate/polyoctenamer modified bitumen,” Road Materials and Pavement Design, vol. 20, no. 7, pp. 1615–1623, 2019, doi: 10.1080/14680629.2018.1467335.

[28]     W. Q. Luo and J. C. Chen, “Preparation and properties of bitumen modified by EVA graft copolymer,” Construction and Building Materials, vol. 25, no. 4, pp. 1830–1835, Apr. 2011, doi: 10.1016/j.conbuildmat.2010.11.079.

[29]     N. Mashaan, M. Karim, F. Khodary, N. Saboo, and A. Milad, “Bituminous Pavement Reinforcement with Fiber: A Review,” CivilEng, vol. 2, no. 3, pp. 599–611, Jul. 2021, doi: 10.3390/civileng2030033.

[30]     M. Ertekin, “Aramid fibers,” in Fiber Technology for Fiber-Reinforced Composites, Elsevier, 2017, pp. 153–167. doi: 10.1016/B978-0-08-101871-2.00007-2.

[31]     R. H. Gong and X. Chen, “Technical Yarns,” in Handbook of Technical Textiles: Second Edition, vol. 1, Elsevier Inc., 2016, pp. 43–62. doi: 10.1016/B978-1-78242-458-1.00003-0.

[32]     M. D. Nazzal, P. Ahmad Al-Hosainat, S.-S. Kim, A. R. Abbas, and A. Hudaib, “Analysis of Aramid Synthetic Fibers in Asphalt Mixes on Local Roads Final Report,” 2021.

[33]     S. Badeli, A. Carter, and S. Saliani, “Effect of Short Aramid Fibers on Asphalt Performance,” 2017. [Online]. Available: http://substanceen.etsmtl.ca/effectshortaramidfibersasphalt/

[34]     A. Alnadish and Y. Aman, “Evaluation of aramid fibre-reinforced asphalt mixtures,” in Lecture Notes in Civil Engineering, vol. 9, Springer, 2019, pp. 1377–1388. doi: 10.1007/978-981-10-8016-6_99.

[35]     S. Majer and B. Budziński, “Influence of Aramid-Polyolefin Fibers on the Properties of Bituminous Mixtures,” IOP Conference Series: Materials Science and Engineering, vol. 1203, no. 3, p. 032093, Nov. 2021, doi: 10.1088/1757-899x/1203/3/032093.

[36]     H. Noorvand, S. C. Brockman, M. Mamlouk, and K. Kaloush, “Effect of Aramid Fibers on Balanced Mix Design of Asphalt Concrete,” CivilEng, vol. 3, no. 1, pp. 21–34, Dec. 2021, doi: 10.3390/civileng3010002.

[37]     D. Wiśniewski, M. Słowik, J. Kempa, A. Lewandowska, and J. Malinowska, “Assessment of impact of aramid fibre addition on the mechanical properties of selected asphalt mixtures,” Materials, vol. 13, no. 15, Aug. 2020, doi: 10.3390/ma13153302.

[38]     P. Apostolidis, X. Liu, C. G. Daniel, S. Erkens, and T. Scarpas, “Effect of synthetic fibres on fracture performance of asphalt mortar,” Road Materials and Pavement Design, vol. 21, no. 7, pp. 1918–1931, Oct. 2020, doi: 10.1080/14680629.2019.1574235.

[39]     C. G. Daniel, X. Liu, P. Apostolidis, S. Erkens, and A. Scarpas, “Impact of synthetic fibres on asphalt concrete mix,” Bituminous Mixtures and Pavements VII- Proceedings of the 7th International Conference on Bituminous Mixtures and Pavements, ICONFBMP 2019, no. May, pp. 709–711, 2019, doi: 10.1201/9781351063265-96.

[40]     C. G. Daniel, X. Liu, P. Apostolidis, S. M. J. G. Erkens, and A. Scarpas, “Low-temperature fracture behaviour of synthetic polymer-fibre reinforced warm mix asphalt,” in Green and Intelligent Technologies for Sustainable and Smart Asphalt Pavements, 1st ed., vol. 1, no. 3, Taylor & Francis, 2021, pp. 358–362. doi: https://doi.org/10.1201/9781003251125.

[41]     Eng. F. Montanelli and I. srl, “Fiber/Polymeric Compound for High Modulus Polymer Modified Asphalt (PMA),” Procedia – Social and Behavioral Sciences, vol. 104, pp. 39–48, Dec. 2013, doi: 10.1016/j.sbspro.2013.11.096.

[42]     S. A. Asif, N. Ahmed, A. Hayat, S. Hussan, F. Shabbir, and K. Mehmood, “Study of adhesion characteristics of different bitumen–aggregate combinations using bitumen bond strength test,” Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A, vol. 41, no. 5, pp. 430–440, Jul. 2018, doi: 10.1080/02533839.2018.1490205.

[43]     H. A. Omar, N. I. M. Yusoff, M. Mubaraki, and H. Ceylan, “Effects of moisture damage on asphalt mixtures,” Journal of Traffic and Transportation Engineering (English Edition), vol. 7, no. 5. Chang’an University, pp. 600–628, Oct. 01, 2020. doi: 10.1016/j.jtte.2020.07.001.

[44]     R. G. Hicks, National Research Council (U.S.). Transportation Research Board., American Association of State Highway and Transportation Officials., and United States. Federal Highway Administration., Moisture damage in asphalt concrete. Transportation Research Board, National Research Council, 1991.

[45]     J. R. Willis, R. West, C. Rodezno, G. Julian, and B. Prowell, “ENGINEERING PROPERTIES AND FIELD PERFORMANCE OF WARM MIX ASPHALT TECHNOLOGIES FINAL REPORT,” 2014.

[46]     A. Mehrara and A. Khodaii, “A review of state of the art on stripping phenomenon in asphalt concrete,” Construction and Building Materials, vol. 38, no. 424, pp. 423–442, 2013, doi: 10.1016/j.conbuildmat.2012.08.033.

[47]     Direktorat Jenderal Bina Marga Kementerian Pekerjaan Umum dan Perumahan Rakyat, “DIREKTORAT JENDERAL BINA MARGA SPESIFIKASI UMUM 2018,” 2018.

[48]     E. Danan Saputro, S. Widodo, and E. Sulandari, “ESTIMASI KADAR ASPAL OPTIMUM PADA HRS BERDASARKAN DATA HISTORIS PENELITIAN DI FAKULTAS TEKNIK UNIVERSITAS TANJUNGPURA.”

[49]     P. E. Bolzan and G. Huber, “Direct Tension Test Experiments,” 1993.

[50]     “Asphalt Concrete Response (ACRe),” 2001.

[51]     P. Apostolidis, X. Liu, A. Scarpas, C. Kasbergen, and M. F. C. van de Ven, “Advanced evaluation of asphalt mortar for induction healing purposes,” Construction and Building Materials, vol. 126, pp. 9–25, Nov. 2016, doi: 10.1016/j.conbuildmat.2016.09.011.

[52]     P. Apostolidis, X. Liu, G. C. Daniel, S. Erkens, and T. Scarpas, “Effect of synthetic fibres on fracture performance of asphalt mortar,” Road Materials and Pavement Design, vol. 21, no. 7, pp. 1918–1931, 2020, doi: 10.1080/14680629.2019.1574235.

[53]     “SUPERPLAST POLYMER COMPOUND HIGH PERFORMANCE POLYMER MODIFIED ASPHALT (PMA).”

[54]     “SUPERPLAST.1.”

 

 

Acknowledgments

The authors wish to acknowledge the support from Pelita Harapan University for this project under the project code of 082/LPPM-UPH/II/2021 and the support from PT. Enceha Pacific with the Superplast polymer material for this research.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published.