EXCAVATABILITY METHOD BASED ON ENGINEERING GEOLOGY CONDITIONS IN THE CONSTRUCTION OF RUKOH DAM SUPPLETION TUNNEL, INDONESIA

Z B Harwinda1,2,W Wilopo[1]* and I G B Indrawan1

 

1 Department of Geological Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

2 Ministry of Public Works and Housing, Jakarta, Indonesia

[1]* Corresponding author’s email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol4.art25

 

ABSTRACT

Determination of excavation technique was one of the essential factors in tunnel construction stability. It also had an impact on the efficiency of the construction phase. However, in the Detail Engineering Design of the Rukoh Dam Suppletion Tunnel, there was no study of the most optimal excavation technique in the construction phase. This study aimed to assess the efficiency of excavation capabilities based on engineering geology conditions. The parameters used in this study are RMR values, GSI values, If-index (discontinuity spacing), Point Load (Is50) values, and Excavation Power Index (EPI). The excavatability classification used the method developed by Abdullatif and Cruden, Pettifer and Fookes, and Tsiambaos and Saroglou. The procedure for evaluating efficiency used the EXCASS system. The tunnel’s rock mass quality was poor calcareous siltstone. The excavation method in the tunnel was the top heading and bench with a stand-up time of 10 hours for a 2.5 m span. Based on the result, the most optimal excavation technique used was the easy ripping method for zones 1 and 4, while the digging method was for zones 2, 3, and 5. Even though the recommendations were classified, project cost efficiency studies are required to bolster the recommendations.

 

Keywords: excavation technique, rukoh dam suppletion tunnel, EXCASS system

 

REFERENCES

Abdullatif O M, Cruden D M 1983 The relationship between rock mass quality and ease of excavation Bulletin of Engineering Geology and the Environment 28:183–187

Badan Pusat Statistik D.I.Yogyakarta 2022 Provinsi Daerah Istimewa Yogyakarta Dalam   Angka. (Yogyakarta: Penerbit Badan Pusa Statistik Provinsi D.I. Yogyakarta).

Bieniawski Z T 1989 Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering (New York: John Wiley & Sons)

Chen Z, He C, Yang W, Guo W, Li Z, and Xu G 2020 Impact of geological conditions on instability causes and mechanical behavior of large-scale tunnels: a case study from the Sichuan–Tibet highway Bulletin of Engineering Geology and the Environment

Dagdelenler G 2021 Comparison of the efficiency evaluations of selected excavatability classifications for rock masses Arabian Journal of Geosciences 14 1281

Dagdelenler G, Sonmez H, and Saroglou 2020 A flexible system for selection of rock mass excavation method Bulletin of Engineering Geology and the Environment 79: 5355–5369

Deere D U 1963 Technical Description of Rock Cores for Engineering Purpose Rock Mechanics and Engineering Geology 1(1): 16-22.

Deere D U and Deere D W 1989 Rock quality designation (RQD) after twenty years (Washington: US Corps of Engineers)

Direktorat Jenderal Bina Marga 1997 Manual Kapasitas Jalan Indonesia (Jakarta: Penerbit Bina Marga)

Fhadil M 2019 Analisis Simpang Bersinyal dan Hubungan Panjang Antrian dan Waktu Tundaan Terhadap Konsumsi Bahan Bakar Minyak (Studi Kasus: Simpang Bersinyal UPN Yogyakarta) Tugas Akhir (Yogyakarta: Universitas Islam Indonesia)

Hoek E. and Brown E T 1997 Practical Estimates of Rock Mass Strength International Journal Rock Mechanics Mining Science 34 1165-1186.

Hoek E, Carter T G, and Diederichs M S 2013 Quantification of the Geological Strength Index Chart Rock Mechanics/Geomechanics Symposium ARMA 672-680.

Iduwin T and Purnama D D 2018 evaluasi kinerja simpang tak bersinyal (studi kasus : Simpang Tiga Jambu Jl. Raya Duri Kosambi) Jurnal Forum Mekanika, Vol. 7, No. 2, 111-116.

Isnaeni M 2003 Efek Lingkungan Interaksi Transportasi dan Tata Ruang Kota Tesis (Bandung: Institut Teknologi Bandung)

ISRM 1978 Suggested Methods for The Quantitative Description of Discontinuities in Rock Masses: International Society for Rock Mechanics. International Journal of Rock Mechanics and Mining Science & Geomechanics 15 319-368

ISRM 1981 Suggested a method rock characterization, testing, and monitoring (Oxford: Pergamon Press)

Julianto E N 2007 Analisis Kinerja Simpang Bersinyal Simpang Bangkong dan Simpang Milo Semarang Berdasarkan Konsumsi Bahan Bakar Minyak Tesis (Semarang: Universitas Dipenogoro)

Kesimal A, Karaman K, Cihangir F, and Erçıkdı F 2018 Excavatability assessment of rock masses for geotechnical studies Handbook of research on trends and digital advances in engineering geology ss.231-256

Khafidz L, Sumarsono A, and Amirotul MHM 2016 hubungan tundaan dan panjang antrian terhadap konsumsi bahan bakar minyak pada lajur pendekat simpang (Studi Kasus Pada Jalan Arteri Kota Surakarta) Jurnal Matriks Teknik Sipil. 774-780.

Khamehchiyan M, Dizadji MR, and Esmaeili M 2014 Application of rock mass Index (RMi) to the rock mass excavatability assessment in open face excavations Geomechanics and Geoengineering 9(1): 63–71

Li Z, Wang L, Feng B, Xiao J, Zhang Q, Li L, and Liang J 2020 Comprehensive collapse investigation and treatment: An engineering case from Qingdao expressway tunnel. Journal of Cleaner Production

Mohamad E T, Kassim K A, and Komoo I 2005 An overview of existing rock excavatability assessment techniques Jurnal Kejuruteraan Awam 17(2): 46–59

Munawar A 2006 Manajemen Lalu Lintas Perkotaan. (Yogyakarta: Beta Offset).

Palmström A and Stille H 2010 Rock Engineering (London: Thomas Telford) pp 408

Palmström A 2001 Measurement and characterizations of rock mass jointing In-Situ Characteristic Rocks pp 140

Pettifer G S, Fookes P G 1994 A revision of the graphical method for assessing the excavatability of rock Quarterly Journal of Engineering Geology 27: 145–164

  1. Wahana Adya Konsultan 2019 Detail Engineering Design Bendung Pengarah Bendungan Tiro (Pidie: Balai Wilayah Sungai Sumatera I)
  2. Wahana Adya Konsultan 2019 Laporan Geologi/Mekanika Tanah DED Bendung Pengarah Bendungan Tiro (Pidie: Balai Wilayah Sungai Sumatera I)
  3. Waskita Karya (Persero) 2019 Topographic Map of Rukoh Dam Suppletion Tunnel (Pidie : Balai Wilayah Sungai Sumatera I) 1
  4. Waskita Karya (Persero) 2022 Laporan Geologi/Mekanika Tanah Investigasi Tambahan TR1 dan TR2 Bendung Pengarah Rukoh (Pidie: Balai Wilayah Sungai Sumatera I)

Putra, A P 2012 Analisis Hubungan Kinerja Simpang Bersinyal Terhadap Konsumsi Bahan Bakar di Kota Surakarta Skripsi (Surakarta: Universitas Sebelas Maret)

Republik Indonesia 2015 Peraturan Menteri Perhubungan No. 96 Tahun 2015 tentang Pedoman Pelaksanaan Manajemen dan Rekayasa Lalu Lintas.

Sinambela T P, Kumaat M, and Pandey S V 2021 analisa hubungan kinerja simpang bersinyal dengan konsumsi bahan bakar (Studi Kasus: Simpang Jl. A.A. Maramis-Jl. Ringroad II) Jurnal TEKNO, Vol. 19, No. 78, 159-170.

Sriwati, Said L B, and Maryam, H 2019 pengaruh pertumbuhan kendaraan dan kapasitas jalan terhadap kemacetan di Ruas Jalan Perintis Kemerdekaan Jurnal Ilmiah Nasional, Vol. 3, No. 1, 79-86.

Tsiambaos G and Saroglou H 2010 Excavatability assessment of rock masses using the geological strength index (GSI) Bulletin of Engineering Geology and the Environment 69(1): 13–27

US Department of the Interior Bureau of Reclamation, 2001 Engineering Geology Field Manual Volume II (USA)

Wang K, Xu S, Zhong Y, Han Z, and Ma E 2021 Deformation failure characteristics of weathered sandstone strata tunnel:  A case study. Engineering Failure Analysis p127

Ya S, Yonghua S, Zhao M, Liu S, and Li X 2018 A case study of the failure of the Liziping tunnel.     Tunneling and     Underground      Space      Technology

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published.