MODIFICATION OF BLASTING GEOMETRY TO INCREASE BLASTING EFFECTIVENESS IN QUARRY

B Sulistiyono[1]*, F Nugraheni2, M A Wibowo3, A Musyafa2

 

1 PT. Wijaya Karya

2 Universitas Islam Indonesia

3 Universitas Diponegoro

[1]* Corresponding author’s email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol2.art10

 

ABSTRACT

It is thought that a technique for carrying out blasting operations for rock extraction must be both effective and secure. It is intended that the blasting will be both safe and able to meet the needs of the stockpile material because the blasting area is adjacent to residential areas. This study intends to determine the cost and duration of the rock excavation work by blasting at the Trenggalek Tugu Dam Construction Project, as well as the effectiveness brought about by the implementation of modified blasting geometry. The inquiry was supported by descriptive and comparative methodologies. For this study, both quantitative and qualitative data were required. Quantitative data was gathered using working drawings, tool specifications, and material specifications; qualitative data was gathered using work procedures, specifications, and islands for related jobs. Quantitative information is obtained through the analysis of papers written by consultants and service providers. To acquire qualitative power, interviews with subject-matter experts and literature research were conducted. Because the work can be done more rapidly than with the prior geometry and because doing so has a lower cost analysis, the results reveal that using the modified geometry is more cost-effective than using the prior blasting geometry. Utilizing a combination of blasting geometry using the CJ Konya method and ICI-Explosive, there was a 9.3% acceleration in task execution and a 1.133% cost efficiency of the contract value (Trial & Error).

 

Keywords: Blasting, Construction; Cost-effective; Geometry

 

REFERENCES

Nurdianaa, A., and Setiabudi, B., (2018), Aplikasi manajemen risiko pada proyek jalan tol Semarang-Solo Ruas Bawen-Solo. Semarang
Darmawi, H., (2008), Manajemen Risiko, Bumi Aksara, Jakarta.
Abimanyu, D., Trides, T., Sakhdillah., (2018), Evaluasi geometri peledakan terhadap fragmentasi batuan dan biaya peledakan PT Teguh Sinarabadi, Kabupaten Kutai Barat Provinsi Kalimantan Timur. UPN Veteran Jogjakarta
Listine, D., Nurhakim., Dwiatmoko, M. U., Excelsior T.P3 (2015), Studi teknis penentuan geometri peledakan dan powder factor (pf) pada pembongkaran bijih besi di PT Putera Bara Mitra, Desa Mentawakan Mulya Kec. Mantewe, Kab. Tanah Bumbu, Kalimantan Selatan. UPN Veteran Jogjakarta
Sudarmono, D., (2013), Kajian Pengurangan Tingkat Getaran Tanah. Skripsi. Universitas Sriwijaya
Hartono, Rudi, (2018), Studi Metode Peledakan. Tesis. UPN Veteran Jogjakarta
Koesnaryo, S., (2001), Rancangan Peledakan Batuan, Jurusan Teknik Pertambangan, Fakultas Teknologi Mineral, Universitas Pembangunan Nasional “Veteran” Yogyakarta
Konya J. Calvin dan Edwaed J. Walter., (1990), Surface Blast Dessign, Prentce Hall, Inc New Jersey
Nurgaheni, Dewi. S., dan Utomo. C., (2011), Analisa Frekuensi Kejadian Risiko pada Pelaksanaan Pemasangan Samungan Pipa Air PDAM Surabaya, ITS, Surabaya.
Pemerintah Republik Indonesia, (2016), Peraturan Menteri Pertahanan Republik Indonesia No 5 Tahun 2016 tentang Pembinaan dan Pengembangan Industri Bahan Peledak. Jakarta: Kementrian Pertahanan Republik Indonesia
Pemerintah Republik Indonesia, (2017), Peraturan Kepala Kepolisian Republik Indonesia No 17 Tahun 2018 Tentang Perizinan, Pengamanan, Pengawasan dan Pengendalian Bahan Peledak Komersial. Jakarta: Kepolisian Republik Indosesia.
Ramli, (2011), Manajemen Risiko dalam Perspektif K3 OHS Risk Management, 2nd edition, Dian Rakyat, Jakarta.
Maryura. R., Toha. M. T., Sudarmono. D., (2013), Kajian pengurangan tingkat getaran tanah (ground vibration level) pada operasi peledakan interburden B2-C tambang batu bara Air Laya PT Bukit Asam (Persero), Tbk Tanjung Enim. PT Bukit Asam (Persero), Tbk. UPN Veteran Jogjakarta
Hartono. R., Panjaitan, Herdiansyah, (2018), Studi metode peledakan pada PT Pro Intertech Indonesia Kotamadya Sorong Provinsi Papua Barat. UPN Veteran Jogjakarta
Sakhdillah, (2018), Evaluasi Geometri Peledakan terhadap Fragmentasi Batuan dan Biaya Peledakan. Skripsi. Kalimantan
Sonhaji, (2011), Manajemen Risiko dalam Proyek Jalan Tol, Diskusi Panel Manajemen Risiko Jalan Tol di Teknik Sipil Undip 2 Mei 2011.

BRACKISH WATER MAPPING BASED ON WATER QUALITY DATA AND GEOELECTRICAL SURVEY : CASE STUDY IN THE SHALLOW GROUNDWATER OF TEGAL CITY

T R Puspita[1],2*, D P E Putra1, A H Rafsanjani1, and R Farjrina 1

 

1 Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada

2 Ministry of Public Work and Housing

[1]* Corresponding author’s email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol2.art9 

 

ABSTRACT

Salty water in the aquifer influences changes in groundwater quality may cause by pumping activities and/or natural phenomena. This paper reported the result of salty water mapping in the shallow groundwater of Tegal city.  The EC values of groundwater in the study area ranges between 510 µS/cm to 7610 µS/cm, and TDS values are between 300 mg/L to 2450 mg/L. The geoelectrical measurement  on study area reveals a very low resistivity layer of 0.307 Ùm at a depth of 2.87 to 12 meters, indicating brackish water. Based on the EC and TDS also geoelectrical survey, a map of salty water is produced and shows that in shallow groundwater of Tegal City, brackish water appears in the middle part of City and northeast part near the coastal area.

 

Keywords : Water mapping; Water Quality Data; Geoelectrical

 

 

REFERENCES

J. E. Neumann et al., (2008), “Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy,” Clim. Change, vol. 129, no. 1–2, pp. 337–349, 2015, doi: 10.1007/s10584-014-1304-z.
W. Wilopo, D. P. E. Putra, and D. A. Wibowo, (2018), “Groundwater flow modeling in the Wates coastal aquifer, Kulon Progo District, Yogyakarta Special Province, Indonesia,” Int. J. GEOMATE, vol. 14, no. 41, pp. 119–125, 2018, doi: 10.21660/2018.41.87886.
A. A. Akinlalu and D. O. Afolabi, (2018) “Borehole depth determination to freshwater and well design using geophysical logs in coastal regions of Lagos, southwestern Nigeria,” Appl. Water Sci., vol. 8, no. 6, pp. 1–17, 2018, doi: 10.1007/s13201-018-0798-3.
Konya J. Calvin dan Edwaed J. Walter., (1990), Surface Blast Dessign, Prentce Hall, Inc New Jersey
P. Prusty and S. H. Farooq, (2020), “Seawater intrusion in the coastal aquifers of India – A review,” HydroResearch, vol. 3, pp. 61–74, 2020, doi: 10.1016/j.hydres.2020.06.001.
M. I. Sahana and R. S. B. Waspodo, (2020), “Mapping of Seawater Intrusion into Coastal Aquifer: A Case Study of Pekalongan Coastal Area in Central Java,” J. Civ. Eng. Forum, vol. 6, no. 1, p. 183, 2020, doi: 10.22146/jcef.53736.
S. Jasechko, D. Perrone, H. Seybold, Y. Fan, and J. W. Kirchner, (2020), “Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion,” Nat. Commun., vol. 11, no. 1, pp. 1–9, 2020, doi: 10.1038/s41467-020-17038-2.
T. dkk Santoso, (2013), “Pendugaan Intrusi Air Laut Dengan Metode Geolistrik Resistivitas 1D di Pantai Payangan Desa Sumberejo Jember,” Berk. Sainstek, vol. 1, no. 1, pp. 17–19, 2013
L. Todd, David; Mays, (2001), “Groundwater Hydrology.” pp. 280–281, 2001. [Online]. Available: http://water.usgs.gov/pubs/circ/circ1186/html/gw_effect.html
M. Gusman, A. Octova, Y. M. Anaperta, B. Muchtar, N. Syah, and D. Hermon, (2020) “Groundwater Table and Salinity Zone Mapping In the Coastal Areas of Padang,” vol. 7, no. 6, pp. 21–27.
D. Setiono, H. Pudjihardjo, and W. Hidajat, (2014), “Penyelidikan zona akuifer menggunakan geolistrik metode Schlumberger di sekitar pantai utara Kecamatan Kramat, Suradadi, dan Warureja Kabupaten Tegal, Jawa Tengah,” Geol. Eng., vol. 6, no. 2, pp. 1–15.
L. P. G. W.M. Telford and R. E. Sheriff, (1991) Applied geophysics (second edition).

DYNAMIC RESPONSE ANALYSIS BASED ON FOUNDATION DIMENSIONS AND MACHINE CAPACITY ON BLOCK-TYPE MACHINE FOUNDATION

S N Fitri[1],2*, N S Surjandari1, Y M Purwana1, B Setiawan1, G Chrismaningwang1, and H Dananjaya1

                                                                                             

1UNS Geoscience Research Group, Civil Engineering Department, Universitas Sebelas Maret, Jebres, Surakarta 57126, Indonesia.

2Disaster Research centre, Universitas Sebelas Maret, Jebres, Surakarta 57126, Indonesia.

[1],2* Corresponding author: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol4.art8

 

ABSTRACT

The development of Indonesia’s economic sectors and populations leads to huge regional problems, which provide the large community’s electricity needs in several areas. The common solution to this issue is to offer the potential natural resources that are safe for the environment and can be used as a source of electricity, such as a small-scale hydroelectric power plant or a Micro-Hydro Power Plant. This structure requires the dynamic foundations to accept dynamic loads caused by machine movements such as rotation, vertical movement, horizontal movement, and torque. The main objective of this work is to analyse the effect dimension of machine foundation and machine capacity in several conditions. This research was conducted on numerous machine capacity, namely machine 1, 2, and 3, which offers different frequency and weight. The foundation length was designed to range between 4 and 6m, which design a similar embedded foundation at 1m and width of 0.5m. The soil properties were conducted in secondary data with CPT results. The outcome provides that the addition of foundation area reduces the amplitude. The results show a similar trend in three categories; vertical, horizontal, and rocking aspects which generate values of approximately 57%, around 40%, and about 50%, respectively, in all machine types. The higher area and length of the foundation, the smaller amplitude will be.

 

Keywords: Machine; Block-type; Dynamic; Amplitude; Foundation

 

REFERENCES

A. F. Ali, M. Y. Fattah, and B. A. Ahmed, “Response of circular footing on dry dense sand to impact load with different embedment depths,” Earthquake and Structures, vol. 14, no. 4, 2018, doi: 10.12989/eas.2018.14.4.323.
Braja M Das, Principles of Soil Dynamic. Boston – United State Of America.: outhern Illinois University at Curbandale, PWS – Kent Publishing Company, 1993.
H. Gunawan, R. H. Dananjaya, and B. Setiawan, “Pengaruh Tinggi, Kedalaman Pondasi Mesin Jenis Blok dan Parameter Tanah Berbutir Halus Terhadap Amplitudo,” Universitas Sebelas Maret, Surkarta, 2017.
I. R. H. H. C. and F. F. Hertiany, “Analisis Dinamik Fondasi Mesin Generator Sets Pada Power House Building Project Lube Oil Blending Plant,” Jurnal Tekno Global, vol. 8, no. 1, 2019.
K. W. A. Al-Kaream, M. Y. Fattah, and Z. S. M. Khaled, “Effect of mode of vibration on the response of machine foundation on sand,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 737, no. 1. doi: 10.1088/1757-899X/737/1/012089.
M. D. Tobi and V. N. van HARLING, “Studi Perencanaan Pembangunan Pltmh Di Kampung Sasnek Distrik Sawiat Kabupaten Sorong Selatan Provinsi Papua Barat,” Electro Luceat, vol. 3, no. 1, 2017, doi: 10.32531/v3i1.63.
M. M. Hassan, N. Cheraghi, G. W. Norlander, and J. Bagga, “Dynamic analysis of machine foundation systems,” in Proceedings, Annual Conference – Canadian Society for Civil Engineering, 2013, vol. 3, no. January.
M. O. and G. P. Sharda Arya, Design of Structures & Foundations for Vibrating Machines. Houston, London, Paris, Tokyo: Gulf Publishing Company, 1979.
O. S. Ali and M. Mahamid, “Effect of Soil-Foundation Interaction on the Dynamic Response of a Four-Cylinder Compressor Foundation,” Practice Periodical on Structural Design and Construction, vol. 23, no. 3, 2018, doi: 10.1061/(asce)sc.1943-5576.0000380.
R. Dewi, Y. Hastuti, and A. Mentari, “Foundation modelling for cooling water pump machine in PT Pupuk Sriwijaya (PURSI) II-B projects,” Jurnal Teknologi, vol. 78, no. 8–5, 2016, doi: 10.11113/jt.v78.9605.
S. C. Arya, R. P. Drewyer, and G. Pincus, “Foundation Design For Vibrating Machines.,” Hydrocarbon Processing, vol. 54, no. 11, 1975.
S. Prakash and V. K. Puri, “Foundation for Vribatting Machines,” Journal of Structural Engineering, Madrash, 2006.
S. Surapreddi and P. Ghosh, “Impact of Footing Shape on Dynamic Properties and Vibration Transmission Characteristics of Machine Foundations,” International Journal of Geosynthetics and Ground Engineering, vol. 8, no. 1, 2022, doi: 10.1007/s40891-021-00347-x.
S. Syahidi, R. H. Dananjaya, and B. Setiawan, “Pengaruh Luas Penampang Pondasi Mesin Jenis Blok Dan Parameter Tanah Berbutir Halus Terhadap Amplitudo,” Pengaruh Luas Penampang Pondasi Mesin Jenis Blok Dan Parameter Tanah Berbutir Halus Terhadap Amplitudo, 2017.
T. Hill et al., “The dynamic soil-structure interaction of shallow foundations on dry sand beds,” PhD Thesis, University of Cambridge, vol. 48, no. June 2018, 2019.

THE EFFECT OF ADDITIONAL LDPE AND POLYURETHANE ON INCREASING PERFORMANCE OF POROUS ASPHALT MIXTURES

Yurika[1]*, Livia1, Makmur A1, and Rachmansyah1

1 Engineering and Science Computer Faculty- Civil Engineering Department, Krida Wacana Christian University, Tanjung Duren Raya no. 4 – West Jakarta, Indonesia

[1]* Corresponding author’s email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol4.art7

ABSTRACT

During the COVID-19 pandemic for more than two years, there was an acceleration in increasing LDPE household waste, especially from food packaging. The problem of plastic waste is an issue that requires more attention for reuse. Meanwhile, the urban infrastructure growth is followed by the reduction of water catchment areas, so that surface water runoff causes flooding. Responding to this, porous pavement is a solution for infrastructure development, that has a low impact on the environment. However, the fact is that porous asphalt pavement has low stability, so it is applied to low traffic loads such as pedestrian ways. To overcome this problem, a material that binds asphalt and aggregate is needed. This research aims to utilize LDPE waste to improve the performance of porous asphalt mixtures. The method used is experimental by using Marshall parameters. The results of the study with the addition of LDPE and Polyurethane obtained an increase in the value of stability by 17.35% but, decreased the value of flow by 15.18% and permeability index by 12.07%. The optimum value is adding 2% LDPE and 7.5% Polyurethane so that LDPE can be used as additional material to replace some asphalt materials in porous asphalt mixtures.

Keywords: LDPE, Polyurethane, Ashpalt Mixtures

 

References

[1]     Gusty S, Tumpu M, Parung H, and Marzuki I 2021 Marshall Characteristics of Porous Asphalt Containing Low-Density Polyethylene (LDPE) Plastic Waste IOP Conf. Series: Earth Environmental Science 921 012025

[2]     Candra P R, Siswanto H, and Rahardjo B 2021 Karakteristik Marshall Campuran Aspal Porus dengan Penambahan Polyurethane Media Teknik Sipil 19(1) 11-16

[3]     Mayuni S, Prabandiyani, and Setiadji B H 2020 Penerapan Perkerasan Aspal Berpori di Indonesia Jurnal Teknik Sipil 20(2) 1-5

[4]     NAPA 2003 Design Construction and Maintenance Guide for Porous Asphalt Pavement United States

[5]            AAPA 2004 National Asphalt Specification S Edition Australia

[6]     Rifqi M G, Nariswari W, Ariyanto E, and Gunawan T 2017 Nilai Stabilitas Porous Asphalt Menggunakan Material Lokal Jurnal Sipil Politeknik 19(1) 1-51

[7]     Hidayati H N, Rifqi M G, and Amin M S 2021 Pengaruh Penambahan Plastik LDPE Pada Campuran Aspal Beton Lapis AC-BC Journal of Applied Civil Engineering and Infrastructure Technology 2(2) 1-6

[8]     Widiatika T, Desriantomy, and Amin M 2021 Analisis Karakteristik Marshall Campuran Hot Rolled Sheet Wearing Course (HRS-WC) Menggunakan Bahan Tambah Plastik Bekas Jenis Low Density Polyethlene (LDPE) Jurnal Teoritis dan Terapan Bidang Keteknikan 4(2) 172-180

[9]     Sismantoro A 2017 Karakteristik Bahan Akustik Poliuretan Berpenguat Partikel Cangkang Kelapa Sawit Thesis (Surabaya: Institut Teknologi Sepuluh November)

[10]   Marga B 2020 Spesifikasi Umum Bina Marga 2018 untuk Pekerjaan Konstruksi Jalan dan Jembatan rev 2 Jakarta

 

COMPOSITE NANOPARTICLE CONCRETE BASE ON FIRE AND EXTREME HIGH-TEMPERATURE ENVIRONMENT

L Wei[1], D Syamsunur1,2*, S Surol1, M N H B Jusoh1, and N I M Yusoff3

1 Department of Civil Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, 56000, Malaysia.

2 Postgraduate Department, Universitas Bina Darma Palembang, Indonesia.

3 Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

1* Corresponding author’s email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol2.art6

 

ABSTRACT

The critical position of concrete plays a decisive role in engineering applications where extreme high-temperature environments severely affect the durability and life cycle of concrete structures. Experiments were conducted to mimic fire and extreme high-temperature environments, using different activities of nano calcium carbonate (NC) and nano silica (NS) to replace cement mixed concrete at 2.5%, 3.0% and 3.5% respectively, and a series of data analysis of nano concrete to derive patterns of performance change and drive new momentum for progress in the concrete industry. Experimental studies were conducted to explore the decaying changes in the mechanical properties of nano concrete after the concrete modified with composite nanomaterials was heated at different temperature environments of 25°C, 200°C, 400°C and 600°C. The results showed that the mechanical compressive strength of the nano concrete increased by 17.05%, 21.81% and 23.00% at 7 days respectively compared to the control concrete, and the nano 3.0% admixture showed excellent mechanical properties in the range of 25°C to 600°C. The results show that the strength checks of the nano-concrete cube and cuboid specimens after heating through different high-temperature environments were similar in rebound tests and no significant differences were found.

 

Keywords: Composite nanoparticles, nano-concrete, extreme high-temperature environments, high-temperature resistance, climate change

 

Reference

[1]     S. A. Miller and F. C. Moore, 2020. “Climate and health damages from global concrete production,” Nat. Clim. Chang., vol. 10, no. 5, pp. 439–443, doi: 10.1038/s41558-020-0733-0.

[2]     M. A. Kewalramani and Z. I. Syed, 2018.“Application of nanomaterials to enhance microstructure and mechanical properties of concrete,” Int. J. Integr. Eng., vol. 10, no. 2, pp. 98–104, doi: 10.30880/ijie.2018.10.02.019.

[3]     V. Vishwakarma and S. Uthaman, 2020. – Environmental impact of sustainable green concrete. Elsevier Inc.,

[4]     K. Kishore and N. Gupta, 2019.“Application of domestic & industrial waste materials in concrete: A review,” Mater. Today Proc., vol. 26, pp. 2926–2931,  doi: 10.1016/j.matpr.2020.02.604.

[5]     K. Gajanan and S. N. Tijare, 2018. “Applications of nanomaterials,” Mater. Today Proc., vol. 5, no. 1, pp. 1093–1096,  doi: 10.1016/j.matpr.2017.11.187.

[6]     P. Mugilvani, S. T. Murugan, B. Kaviya, and K. Sathishkumar, 2019. “Experimental investigation on nano concrete,” Int. J. Civ. Eng. Technol., vol. 10, no. 1, pp. 907–912

[7]     M. Alvansazyazdi and J. A. Rosero, 2019. “Pathway of Concrete Improvement Via Nano-Technology,” Ingenio, vol. 2, no. 1, pp. 52–61,  doi: 10.29166/ingenio.v2i1.1637.

[8]     S. Madhusudanan, L. R. Amirtham, and S. Nallusamy, 2019. “Symbiotic outcomes of potency and microstructure on nano composite with microsilica and nanosilica additives,” J. Nano Res., vol. 57, no, pp. 105–116, doi: 10.4028/www.scientific.net/JNanoR.57.105.

[9]     J. Yang, “Effect of Nano-CaCO3 on Concrete Compressive Strength,” IOP Conf. Ser. Earth Environ. Sci., vol. 371, no. 4, 2019, doi: 10.1088/1755-1315/371/4/042006.

[10]   J. Sun, X. Shen, G. Tan, and J. E. Tanner, 2019. “Modification Effects of Nano-SiO2 on Early Compressive Strength and Hydration Characteristics of High-Volume Fly Ash Concrete,” J. Mater. Civ. Eng., vol. 31, no. 6, p. 04019057,  doi: 10.1061/(asce)mt.1943-5533.0002665.

[11]   K. Ashwini and P. Srinivasa Rao, 2021. “Freeze and thaw resistance of concrete using alccofine and nano-silica,” Mater. Today Proc., vol. 47, pp. 4336–4340, doi: 10.1016/j.matpr.2021.04.629.

[12]   Y. Cheng and Z. Shi, 2019. “Experimental Study on Nano-SiO 2 Improving Concrete Durability of Bridge Deck Pavement in Cold Regions,” Adv. Civ. Eng., vol. 19, doi: 10.1155/2019/5284913.

[13]   M. F. Abd-elmagied, 2019. “Influence of Different Nano Materials on Mechanical Properties of Plain Concrete,” Eur. J. Eng. Res. Sci., vol. 4, no. 6, pp. 129–134, doi: 10.24018/ejers.2019.4.6.1389.

[14]   K. W. Shah, G. F. Huseien, and T. Xiong, 2020. Functional nanomaterials and their applications toward smart and green buildings. INC.11

[15]   R. Davies et al.,2018 “Large scale application of self-healing concrete: Design, construction, and testing,” Front. Mater., vol. 5, no. September, pp. 1–12, doi: 10.3389/fmats.2018.00051.

[16]   A. Nazerigivi and A. Najigivi, 2019. “Study on mechanical properties of ternary blended concrete containing two different sizes of nano-SiO2,” Compos. Part B Eng., vol. 167, pp. 20–24, doi: 10.1016/j.compositesb.2018.11.136.

[17]   A. A. Elsayd and I. N. Fathy, 2019. “Experimental Study of Fire Effects on Compressive Strength of Normal-Strength Concrete Supported With Nanomaterials Additives,” IOSR J. Mech. Civ. Eng., vol. 16, no. 1, pp. 28–37.

[18]   C. D. Atis, November 2019. “Influence of nano SiO2 and nano CaCO3 particles on strength , workability , and microstructural properties of fly ash-based geopolymer,” no.  pp. 1–16, 2020, doi: 10.1002/suco.201900479.

[19]   K. Huang, J. Xie, R. Wang, Y. Feng, and R. Rao, 2021. “Effects of the combined usage of nanomaterials and steel fibres on the workability, compressive strength, and microstructure of ultra-high performance concrete,” Nanotechnol. Rev., vol. 10, no. 1, pp. 304–317, doi: 10.1515/ntrev-2021-0029.

[20]   J. Wang, P. Du, Z. Zhou, D. Xu, N. Xie, and X. Cheng, 2019, “Effect of nano-silica on hydration, microstructure of alkali-activated slag,” Constr. Build. Mater., vol. 220, pp. 110–118, doi: 10.1016/j.conbuildmat.2019.05.158.

[21]   R. Behzadian and H. Shahrajabian, 2019. “Experimental Study of the Effect of Nano-silica on the Mechanical Properties of Concrete/PET Composites,” KSCE J. Civ. Eng., vol. 23, no. 8, pp. 3660–3668, doi: 10.1007/s12205-019-2440-9.

[22]   H. Assaedi et al., 2020, “Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3,” Constr. Build. Mater., vol. 252, p. 119137, doi: 10.1016/j.conbuildmat.2020.119137.

[23]   M. Cao, X. Yuan, X. Ming, and C. Xie, 2022. “Effect of High Temperature on Compressive Strength and Microstructure of Cement Paste Modified by Micro- and Nano-calcium Carbonate Particles,” Fire Technol., vol. 58, no. 3, pp. 1469–1491, doi: 10.1007/s10694-021-01211-0.

[24]   W. Yonggui, L. Shuaipeng, P. Hughes, and F. Yuhui, 2020. “Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures,” Constr. Build. Mater., vol. 247, p. 118561, doi: 10.1016/j.conbuildmat.2020.118561.

UTILIZING FOREST CITY AS A FORM OF THERAPY TO CREATE A WORLD CITY FOR ALL IN INDONESIA’S NEW CAPITAL

H Prabowo[1], M P Dewi², D S E Dewi³, Hartatik4, M F Firdaus5*, N A Afandi6, L Ismayenti7

 

1 Fakultas Psikologi Universitas Gunadarma

2 Fakultas Psikologi Universitas Gunadarma

3 Fakultas Psikologi Universitas Muhammadiyah Purwokerto

4 STIKES Muhammadiyah Bojonegoro

5 Fakultas Psikologi Universitas Gunadarma

6 Prodi Psikologi Islam Fakultas Ushuluddin dan Dakwah IAIN Kediri

7 Prodi Keselamatan dan Kesehatan Kerja, Fakultas Sekolah Vokasi, Universitas Sebelas Maret

[1]* Corresponding author’s email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol2.art5

 

ABSTRACT

A literature review that proposes forest therapy is presented in this study. The Indonesian government is creating a forest city as its new capital city, in which this therapy is being explored. If integrated into the forest city in the new capital city, forest therapy offers a variety of physical and psychological health benefits. It is anticipated that the forest city would not only improve the health of the capital’s residents but will also bring about the realization of a world city for all.

Keywords: Forest City, Capital City, Physical Therapy, Psychological Therapy

 

References

  • Apip, Saut A H, Sagala, and Luo P 2022 Overview Of Jakarta Water-Related Environmental Challenges Working Report Lipi.Go.Id. http://lipi.go.id/publikasi/overview-of-jakarta-water-related-environmental-challenges-working-report/2121.
  • BPS Provinsi DKI Jakarta 2022 Jumlah Penduduk Hasil SP2020 Provinsi DKI Jakarta sebesar 10.56 juta jiwa JakartaGo.Id. https://jakarta.bps.go.id/pressrelease/2021/01/22/541/jumlah-penduduk-hasil-sp2020-provinsi-dki-jakarta-sebesar-10-56-juta-jiwa.html.
  • Chaussard E, Amelung F, Abidin H, Hong S, Chaussard E, et al. 2013 Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction Remote Sensing of Environment 128, 150-161. DOI: 10.1016/j.rse.2012.10.015.
  • Abidin H, Andreas H, Gumilar I, Fukuda, Pohan, and Deguchi 2011 Land subsidence of Jakarta (Indonesia) and its relation with urban development Natural Hazards: Journal Of The International Society For The Prevention And Mitigation Of Natural Hazards59 (3), 1753-1771. DOI: https://doi.org/10.1007/s11069-011-9866-9
  • Statistik Sektoral Provinsi DKI Jakarta. (2022). Perumahan. https://statistik.jakarta.go.id/statistik-perumahan-dki-jakarta-tahun-2019/
  • Prabowo H, Afandi N A, Dewi M P and Salve H R 2022, April Kamal Muara and Kampung Dadap: Survival under Environmental Pressures In3rd Tarumanagara International Conference on the Applications of Social Sciences and Humanities TICASH 2021-Atlantis Press, 1703-1708.
  • Susan A, Rijanta ES, Kumalawa R, Giffari RA, et al 2022  Following frontiers of the ‘ forest city ’ profiling ibu kota Nusantara (Yogyakarta. Mega Cakrawala) p.1–41.
  • Kementerian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional (Bappenas). Sosialisasi Undang-Undang No. 3 Tahun 2022 tentang Ibu Kota Negara: Rencana Induk IKN dalam Lampiran UU IKN. 14 Maret 2022
  • Forum Konsultasi Publik Penyusunan RKPD Kabupaten Kutai Kartanegara. Pokok-pokok perkembangan Persiapan pembangunan IKN dan kesiapan pemerintah Kabupaten Kutai Kartanegara dalam pembangunan Ibu Kota Nusantara 2022 kaltimprov.go.id. Available at: https://bappeda.kaltimprov.go.id/storage/datapaparans/February2022/320SoiPpb1f9EGFyTBf3.
  • Mutaqin DJ, Muslim MB, Rahayu NH 2021 Analisis Konsep Forest City dalam Rencana Pembangunan Ibu Kota Negara Bappenas Work Pap 4(1),13–29.
  • Guan X, Roös P, Jones DS 13–21 July 2018 Biophilic city, vertical city, forest city? Towards an Architectree In IFLA 2018: Biophilic City, Smart Nation, and Future Resilience Proceedings of the 55th International Federation of Landscape Architects World Congress Singapore, 813-826.
  • Xu C, Dong L, Yu C, Zhang Y, Cheng B 2020 Aug 10 Can forest city construction affect urban air quality? The evidence from the Beijing-Tianjin-Hebei urban agglomeration of China Journal of Cleaner Production 264,
  • Konijnendijk CC, Ricard RM, Kenney A, Randrup TB 2006 Defining urban forestry–A comparative perspective of North America and Europe Urban forestry & urban greening.4(3-4), 93-103.
  • WHO 2022 Health and Well-Being Available at: https://www.who.int/data/gho/data/major-themes/health-and-well-being.
  • Park BJ, Tsunetsugu Y, Kasetani T, Kagawa T, Miyazaki Y 2010 Jan The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): evidence from field experiments in 24 forests across Japan Environmental health and preventive medicine 15(1),18-26.
  • Lee I, Choi H, Bang KS, Kim S, Song M, Lee B 2017 Mar Effects of forest therapy on depressive symptoms among adults: A systematic review International journal of environmental research and public health 14(3),
  • Kim JG, Khil TG, Lim Y, Park K, Shin M, Shin WS 2020 May The psychological effects of a campus forest therapy program International journal of environmental research and public health 17(10),
  • Clifford, M. A 2018 Your guide to forest bathing (Expanded edition): Experience the healing power of nature (Newburyport: Conari Press).
  • Bang KS, Kim S, Song MK, Kang KI, Jeong Y 2018 Sep The effects of a health promotion program using urban forests and nursing student mentors on the perceived and psychological health of elementary school children in vulnerable populations International Journal of Environmental Research and Public Health 15(9),
  • Bielinis E, Takayama N, Boiko S, Omelan A, Bielinis L 2018 Jan The effect of winter forest bathing on psychological relaxation of young Polish adults Urban Forestry & Urban Greening 29, 276-283.
  • Lee J, Tsunetsugu Y, Takayama N, Park BJ, Li Q, Song C, Komatsu M, Ikei H, Tyrväinen L, Kagawa T, Miyazaki Y 2014 Oct Influence of forest therapy on cardiovascular relaxation in young adults Evidence-based complementary and alternative medicine 2014, 834360.
  • Tamplin H 2017 World’s laziest country revealed and the UK is looking pretty activeAvailable at: https://metro.co.uk/2017/07/13/worlds-laziest-country-revealed-and-the-uk-is-looking-pretty-active-6775553/.
  • Cochrane J 2017 Jakarta, the City Where Nobody Wants to Walk. The New York Times Available at: https://www.nytimes.com/2017/08/20/world/asia/jakarta-walking-study-sidewalks.html.
  • Miyazaki Y, Song C, Ikei H 2015 Preventive medical effects of nature therapy and their individual differences J. Physiol. Anthropol. 20,19-32.
  • Kaplan, R, Kaplan, S 1989 The Experience of Nature: A Psychological Perspective (Cambridge: Cambridge University Press).
  • Lee J, Li Q, Tyrväinen L, Tsunetsugu Y, Park BJ, Kagawa T, Miyazaki Y 2012 Nature therapy and preventive medicine Public Health-Social and Behavioral Health 16(16), 325-50.
  • Song C, Ikei H, Miyazaki Y 2016 Physiological effects of nature therapy: A review of the research in Japan International journal of environmental research and public health 13(8),
  • Arvay C. G. 2019 Updating the biophilia hypothesis in the context of forest medicine In D. Kotte, Qing Li, Won Sop Shin & A.Michalsen (Eds.) International handbook of forest therapy (Newcastle: Cambridge Scholars Publishing).
  • Kang MJ, Kim HS, Kim JY 2022 Effects of Forest-Based Interventions on Mental Health: A Meta-Analysis of Randomized Controlled Trials. International Journal of Environmental Research and Public Health 19(8),
  • Kotera Y, Richardson M, Sheffield D 2022 Effects of shinrin-yoku (forest bathing) and nature therapy on mental health: A systematic review and meta-analysis International Journal of Mental Health and Addiction 20(1), 337-61.
  • Song MK, Bang KS. A 2017 Systematic review of forest therapy programs for elementary school students Child Health Nursing Research 23(3), 300-311.
  • Wen Y, Yan Q, Pan Y, Gu X, Liu Y 2019 Medical empirical research on forest bathing (Shinrin-yoku): A systematic review Environmental health and preventive medicine 24(1),1-21.
  • Mathias, S., Daigle, P., Dancause, K. N., & Gadais, T. (2020). Forest bathing: a narrative review of the effects on health for outdoor and environmental education use in Canada. Journal of Outdoor and Environmental Education23(3), 309-321.
  • Kim SY, Choi J 2021 Effects of Korean forest healing programs on stress in adults: a systematic review and meta-analysis Forest Science and Technology 17(4), 206-13.
  • Simonienko K, Jakubowska M, Konarzewska B 2020 Shinrin-yoku i terapia lasem—przegląd literatury Psychiatria 17(3),145-54.
  • Lee I, Choi H, Bang KS, Kim S, Song M, Lee B 2017 Effects of forest therapy on depressive symptoms among adults: A systematic review International journal of environmental research and public health 14(3),
  • Ideno Y, Hayashi K, Abe Y, Ueda K, Iso H, Noda M, Lee JS, Suzuki S 2017 Blood pressure-lowering effect of Shinrin-yoku (Forest bathing): A systematic review and meta-analysis BMC complementary and alternative medicine 17(1),1-2.
  • Stier-Jarmer M, Throner V, Kirschneck M, Immich G, Frisch D, Schuh A 2021 The psychological and physical effects of forests on human health: A systematic review of systematic reviews and meta-analyses International Journal of Environmental Research and Public Health18(4), 1770.
  • Li Q 2019 Effect of forest bathing (shinrin-yoku) on human health: A review of the literature Sante Publique (HS1),135-43.
  • Kuo M 2015 How might contact with nature promote human health? Promising mechanisms and a possible central pathway Frontiers in psychology,
  • Permadi DB, Septiana RM, Nurjanto HH, Pujiarti R, Triyoga A 2022 The Role of Wanagama as healing Forest during the pandemic covid 19 Jurnal Pengabdian kepada Masyarakat (Indonesian Journal of Community Engagement) 8(2):83-88. DOI: http://doi.org/10.22146/jpkm.7404
  • Li Q, Morimoto K, Nakadai A, Inagaki H, Katsumata M, Shimizu T, Hirata Y, Hirata K, Suzuki H, Miyazaki Y, Kagawa T 2007 Forest bathing enhances human natural killer activity and expression of anti-cancer proteins International journal of immunopathology and pharmacology 20(2), 3-8.
  • Li Q, Kobayashi M, Inagaki H, Hirata Y, Li YJ, Hirata K, Shimizu T, Suzuki H, Katsumata M, Wakayama Y, Kawada T 2010 A day trip to a forest park increases human natural killer activity and the expression of anti-cancer proteins in male subjects Journal of biological regulators and homeostatic agents 24(2),157-65.
  • Li Q, Otsuka T, Kobayashi M, Wakayama Y, Inagaki H, Katsumata M, Hirata Y, Li Y, Hirata K, Shimizu T, Suzuki H 2011 Acute effects of walking in forest environments on cardiovascular and metabolic parameters European journal of applied physiology 111(11), 2845-53.
  • Li Q, Morimoto K, Kobayashi M, Inagaki H, Katsumata M, Hirata Y, Hirata K, Shimizu T, Li YJ, Wakayama Y, Kawada T 2008 A forest bathing trip increases human natural killer activity and expression of anti-cancer proteins in female subjects J Biol Regul Homeost Agents 22(1), 45-55.
  • Li Q, Kobayashi M, Wakayama Y, Inagaki H, Katsumata M, Hirata Y, Hirata K, Shimizu T, Kawada T, Park BJ, Ohira T 2009 Effect of phytoncide from trees on human natural killer cell function International journal of immunopathology and pharmacology 22(4), 951-9.
  • Li Q, Nakadai A, Matsushima H, Miyazaki Y, Krensky AM, Kawada T, Morimoto K 2006 Phytoncides (wood essential oils) induce human natural killer cell activity Immunopharmacology and immunotoxicology 28(2),319-33.
  • Li Q. Effect of forest bathing trips on human immune function 2010 Environmental health and preventive medicine 15(1), 9-17.
  • Wang S Y 2019 The effect of phytoncides In Kotte D, Li Q, Shin WS, Michalsen A, editors. International Handbook of Forest Therapy (Newcastle: Cambridge Scholars Publishing).
  • Zhang Z, Wang P, Gao Y, Ye B 2020 Current development status of forest therapy in China In Healthcare 8(1), p.61 MDPI.
  • Lee HJ, Son YH, Kim S, Lee DK 2019 Healing experiences of middle-aged women through an urban forest therapy program Urban Forestry & Urban Greening 38, 383-91.
  • Jung WH, Woo JM, Ryu JS 2015 Effect of a forest therapy program and the forest environment on female workers’ stress Urban forestry & urban greening 14(2), 274-81.
  • Fadilah I 2022 Istana Wakil Presiden Dibangun Pertama di IKN, Bangunan Lain Gimana?detikfinance. Available at: https://finance.detik.com/properti/d-6185563/istana-wakil-presiden-dibangun-pertama-di-ikn-bangunan-lain-gimana.
  • Strite S and Morkoc H 1992 Vac. Sci. Technol. B 10 1237
  • Beatley T 2016 The Power of Urban Nature: The Essential Benefits of Biophilic Urbanism. In Beatley T, editor Handbook of biophilic city planning & design (Washington: Island Press).

MECHANICAL PROPERTIES OF ABACA FIBER REINFORCED POLYMER SHEET AS SUSTAINABLE GREEN STRENGTHENING MATERIAL

S Fahri[1]*, Fakhruddin3, R Djamaluddin2, R Irmawaty3, H Usman4, and N A Mawaddah4

 

1Civil Engineering Department, Hasanuddin University, Indonesia.

2Civil Engineering Department, Hasanuddin University, Indonesia.

3Civil Engineering Department, Hasanuddin University, Indonesia.

4Civil Engineering Department, Hasanuddin University, Indonesia.

[1]1* Corresponding author’s email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol2.art4

 

ABSTRACT

Today, FRP system is one of the most widely used methods of structural repair and strengthening but the price is relatively expensive. Therefore, it is necessary to develop FRP materials generated from natural fibers that have the potential for high tensile strength, environmentally friendly, and lower costs. In this study, Abaca fiber (Musa textilis) derived from  Abaca banana is used as the constituent material of Abaca Fiber Reinforced Polymer Sheet (Abaca FRP Sheet), which will be used as strengthening materials of structural elements. Tensile  strength testing was performed as the preliminary test to determine the mechanical properties of Abaca FRP Sheet. Abaca FRP Sheet with and without NaOH treatment was a test variation. The  results of the tests were compared to commercial GFRP sheets. ASTM D3039/D3039M-14 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials is referenced in the test specimens. Alkali treatment changes the structure and visual observation of the abaca fiber. Immersion of abaca fibers in 0.5% NaOH solutions for 30 minutes increased the tensile strength, Young’s modulus (GPa) and Strain at break as compared to the untreated abaca fibers.

Keywords: Abaca Fiber, Glass Fiber, Tensile Strength, Strengthening Material

 

References

  • ACI Committee. ACI 440.2R-08.Guide for the Design and Construction of Externally Bonded FRP System for Strengthening Concrete Structures. USA.Farmington Hills, 2008.
  • Adeniyi, George Adewale., Damilola Victoria Onifade, Joshua O. Ighalo.A Review of Coir Fiber Reindorced Polymer Composites. Composite Part B. Elsevier, 2019.
  • D 3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, American Society for Testing and Material, 2012.
  • Cai M, Takagi M., Nakagaito AN., Li Y., and Waterhouse GIN. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composite: Part A 90 (2016), 589-597.
  • Dedi, Setiawan. Karakterisasi Serat Abaca Sebagai Alternatif Material Penguat Komposit Ramah Lingkungan. INDEPT, Vol. 4. No.1, 2015.
  • Munawir, Ali. Natural Fiber-Reinforced Polymer Composites. Proc. Pakistan Acad. Sel. 44(2):129-144-2007.
  • Abaca (Musa textilis Nee).Potensi, pola pengembangan dan Masalahnya. Warta Penelitian dan Pengembangan Tanaman Industri, Vol. 5 No.3, 1999.
  • SNI – 2847 – 2019, Persyaratan Beton Struktural untuk Bangunan dan Penjelasan. Jakarta: Badan Standarisasi Nasional, 2019.
  • Vijayalakshmi, K., C.Y.K. Neeraja, A. Kavitha and J. Hayavadana. Abaca fibre. Trans. Eng. Sci., 2: 16-19, 2014.

 

DEVELOPMENT AND UTILIZATION OF AERIAL PHOTOGRAMMETRY SURVEY USING NONMETRIC CAMERA DRONE WITH OPEN-SOURCE SOFTWARE: CASE STUDY ON TUGU DAM PROJECT

C Oliver A P L[1]* and F Nugraheni1

1 Graduate Student, Universitas Islam Indonesia, Indonesia

[1]* Corresponding author: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol4.art3

 

ABSTRACT

The construction of the Tugu Dam requires stone material obtained from Quarry for the main dam. The stone material for the main dam is very critical because the work on the main dam should be carried out immediately during the dry season (for work safety and quality). Preparation for material transportation at the Quarry includes calculation of the availability of material volumes, construction of haul roads, and technical plans for transport and blasting management. These activities require surveying and mapping. The project team chose the drone mapping method using the Open-Source program rather than the conventional method for accelerating the surveying and mapping work. Aerial photogrammetry survey can complete a variety of projects, such as available material calculation, blasting management, and hauling road planning. Based on cost, quality, and time analysis, drone mapping using open-source computer programs is cheaper and faster than using paid computer programs and conventional surveying methods, but using Open-source software has the disadvantage of limited features and low data accuracy with a CE90 value = 17,706 and LE90=37,126 for this study. In general, drone mapping has lower accuracy than conventional surveying methods, but the output of drone mapping which is orthomosaic maps and Digital Elevation Models can be used for the development of Building Information Modeling (BIM) and autonomous engineering.

 

Keywords: Aerial Photogrammetry; Dam; Nonmetric camera drone

 

REFERENCES

Arif, F., Maulud, K. N. A., & Rahman, A. A. A. 2018 Generation Of Digital Elevation Model Through Aerial Technique IOP Conference Series., 169

Avicenna, M 2018 Calibration Analysis of Non-metric Camera on Multicopter RTF Type Unmanned Aerial Vehicle (Drone) Institusi Teknologi Sepuluh Nopember

Badan Informasi Geospasial (BIG) 2014 Pedoman Teknis Ketelitian Peta Dasar

BIMWIKA 2021 Laporan Survei Fotogrammetri Bandara Dhoho Kediri Wijaya Karya

Jirigalatu, J., Krishna, K., Silva, E. L. S. da, & Dossing, A 2020 Experiments on Magnetic Interference fot a Portable Airbone Magnetometry System Using a Hybrid Unmanned Aerial Vehicle (UAV) Geoscientific Instrumentation Methods and Data Systems, 29

Kafiar, M. T 2020 Visualisasi 3D Modelling dari Hasil Kombinasi Kamera DSLR dan UAV dengan Metode Close Rang Photogrammetry (Studi Kasus : Objek Plengsengan, Bendungan Sengkaling, Desa Tegal Gondo, Kecamatan Karang Ploso, Kabupaten Malang) Insitut Teknologi Nasional Malang

Meiarti, R 2019 Uji Akurasi Hasil Teknologi Pesawat Udara Tanpa Awak (Unmanned Aerial Vehicle) dalam Aplikasi Pemetaan Kebencanaan Kepesisiran Jurnal Geografi, Edukasi dan Lingkungan (JGEL), Vol 3

Nitih Indra Komala, D 2020 Photogrammetry dalam Perancangan: Pemetaan dan Pemodelan Kawasan Desa Wisata Erracotta, 2 no 1

Peraturan Badan Informasi Republik Indonesia 2020 Standar Pengumpulan Data Geospasial Dasar Untuk Pembuatan Peta Dasar Skala Besar

Pratama, D. R., & Hariyanto, T 2013 Evaluasi Penggunaan Kamera Non Metrik Pada Fotogrametri Jarak Dekat Journal of Geodesy and Geomatics, Vol 8

Prayogo, I. P. H., J. Manoppo, F., & Lefrandt, L. I. R 2020 Pemanfaatan Teknologi Unmanned Aerial Vehicle (UAV) Quadcopter Dalam Pemetaan Digital (Fotogrametri) Menggunakan Kerangka Ground Control Point (GCP) Jurnal Ilmiah Media Engineering, Vol.10

Qolbu, Farizan, Robi, M., & Afif, M 2021 Analisis Perhitungan Volume Cut and Fill dengan Metode Garis Kontur dari Data Foto Udara dan Metode Cross Section dari Data Pengukuran Waterpass pada Runway End Safety Area (RESA) dan End Runway Strip (ERS) Bandara Internasional Dhoho, Kediri Wika Dhoho

Ramadhani, F. A. and C. O 2022 Laporan BIM WIKA Awards Team Dhoho Wijaya Karya

Sutanto Samuel, J., & Ridwan, B. W 2016 Teknologi Drone untuk Pembuatan Peta Kontur: Studi Kasus Kawasan P3SON Hambalang Jurnal Teknik Hidraulik, Vol 7 No 2

Yunanto, I., Apriadi, R., & Ngatemin 2021 Fotogrametri Untuk Pengukuran Progres Lapangan Di Bendungan Cipanas Paket 1 Wijaya Karya.

 

The Evaluation Of Moisture Sensitivity Of Ethylene-Vinyl Acetate (Eva) Modified Hot And Warm Mix Asphalt Mastic

C G Daniel[1]*, J Widjajakususma1, M I Azrena1

1Department of Civil Engineering, Pelita Harapan University, Indonesia

DOI: https://doi.org/10.20885/icsbe.vol4.art1

 

 

ABSTRACT

This study aims to evaluate the effect of applying ethylene-vinyl acetate (EVA) using the dry mixing method on the mechanical properties of the HMA and WMA mixtures on the mastic scale against moisture damage given various polymer contents; 2%, 5%, 6%, and 8% of bitumen weight. The tensile strength of dry hot and warm polymer-modified bituminous mastic was improved by 40% and 100% relative to the control mix, respectively, from the dosage of 0.6% EVA. Moreover, the fracture energy depicted a similar trend, with the gaps becoming 34% and 136%. Both parameters have shown increasing increment up to the dosage of 6%, beyond which the values declined. In contrast, the tensile strength ratio (TSR) and fracture energy ratio of the hot mastic mix was higher than the warm mix, while the increment of the ratio to control mix was less than that of the dry specimens. This indicates an insignificant influence of polymer on the adhesion bonding in the mastic upon being subjected to the moisture effect, especially in the warm mix. However, its impact on hot asphalt mastic specimens was still acceptable. The dosage of 6% can be depicted to give the best outcome in this study.

Keywords: Moisture Sensitivity, Ethylene-Vinyl Acetate, Hot Mix, Warm Mix, Asphalt Mastic

[1]* Corresponding author’s email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol4.art1

 

REFERENCES

[1]       L. Brasileiro, F. Moreno-Navarro, R. Tauste-Martínez, J. Matos, and M. del C. Rubio-Gámez, “Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review,” Sustainability (Switzerland), vol. 11, no. 3, Jan. 2019, doi: 10.3390/su11030646.

[2]       N. Dishovsky and M. Mihaylov, ELASTOMER-BASED COMPOSITE MATERIALS Mechanical, Dynamic, and Microwave Properties and Engineering Applications. 2018.

[3]       P. K. Mallick, “Thermoplastics and thermoplastic-matrix composites for lightweight automotive structures,” 2010. doi: 10.1016/B978-1-84569-463-0.50004-3.

[4]       J. G. Drobny, Handbook of Thermoplastic Elastomers. William Andrew, 2014.

[5]       L. Wang, L. Zhang, Y. Shi, and Z. Wang, “Thermoplastic Elastomers Based on Ethylene-vinyl Acetate Copolymer and Waste Nitrile Butadiene Rubber Powder Blends Compatibilized by Chlorinated Polyethylene,” Journal of Macromolecular Science, Part B: Physics, vol. 57, no. 4, pp. 305–316, Apr. 2018, doi: 10.1080/00222348.2018.1460975.

[6]       Hanna Dodiuk, Handbook of Thermoset Plastics. William Andrew, 2014.

[7]       S. M. Soleimani, A. Faheiman, and Z. Mowaze, “The Effects of Using Crumb Rubber Modified Binder in an Asphalt Pavement,” American Journal of Engineering and Applied Sciences, vol. 13, no. 2, pp. 237–253, Feb. 2020, doi: 10.3844/ajeassp.2020.237.253.

[8]       M. A. Bilema et al., “Moisture Sensitivity of Crumb Rubber Modified Modifier Warm Mix Asphalt Additive for Two Different Compaction Temperatures,” in IOP Conference Series: Earth and Environmental Science, Apr. 2018, vol. 140, no. 1. doi: 10.1088/1755-1315/140/1/012072.

[9]       H. Wang, X. Liu, M. van de Ven, G. Lu, S. Erkens, and A. Skarpas, “Fatigue performance of long-term aged crumb rubber modified bitumen containing warm-mix additives,” Construction and Building Materials, vol. 239, Apr. 2020, doi: 10.1016/j.conbuildmat.2019.117824.

[10]     H. Wang, X. Liu, P. Apostolidis, and T. Scarpas, “Rheological behavior and its chemical interpretation of crumb rubber modified asphalt containing warm-mix additives,” Transportation Research Record, vol. 2672, no. 28, pp. 337–348, Jan. 2018, doi: 10.1177/0361198118781376.

[11]     N. Lushinga, L. Cao, Z. Dong, C. Yang, and C. O. Assogba, “Performance Evaluation of Crumb Rubber Asphalt Modified with Silicone-Based Warm Mix Additives,” Advances in Civil Engineering, vol. 2020, 2020, doi: 10.1155/2020/4840825.

[12]     K. A. Ghuzlan, G. G. Al-Khateeb, and Y. Qasem, “Rheological Properties of Polyethylene-Modified Asphalt Binder.”

[13]     S. Sharma, S. Sharma, and N. Upadhyay, “Composition Based Physicochemical Analysis of Modified Bitumen by HDPE/LDPE,” Oriental Journal of Chemistry, vol. 35, no. 3, pp. 1167–1173, Jun. 2019, doi: 10.13005/ojc/350336.

[14]     F. M. Nejad, K. Naderi, and R. Zarroodi, “Effect of cross-linkers on the performance of polyethylene-modified asphalt binders,” Proceedings of Institution of Civil Engineers: Construction Materials, vol. 170, no. 4, pp. 186–193, Aug. 2017, doi: 10.1680/jcoma.16.00021.

[15]     C. Fuentes-Audén et al., “Evaluation of thermal and mechanical properties of recycled polyethylene modified bitumen,” Polymer Testing, vol. 27, no. 8, pp. 1005–1012, 2008, doi: 10.1016/j.polymertesting.2008.09.006.

[16]     E. S. Okhotnikova, I. N. Frolov, Y. M. Ganeeva, A. A. Firsin, and T. N. Yusupova, “Rheological behavior of recycled polyethylene modified bitumens,” Petroleum Science and Technology, vol. 37, no. 10, pp. 1136–1142, May 2019, doi: 10.1080/10916466.2019.1578796.

[17]     Z. Xie and J. Shen, “Effect of cross-linking agent on the properties of asphalt rubber,” Construction and Building Materials, vol. 67, no. PART B, pp. 234–238, Sep. 2014, doi: 10.1016/j.conbuildmat.2014.03.039.

[18]     T. Mandal, R. Sylla, H. U. Bahia, and S. Barmand, “Effect of cross-linking agents on the rheological properties of polymer-modified bitumen,” Road Materials and Pavement Design, vol. 16, pp. 349–361, May 2015, doi: 10.1080/14680629.2015.1029683.

[19]     P. Ahmedzade et al., “Use of maleic anhydride grafted recycled polyethylene treated by irradiation in bitumen modification,” Jan. 2017. doi: 10.14311/ee.2016.155.

[20]     M. Porto, P. Caputo, V. Loise, S. Eskandarsefat, B. Teltayev, and C. O. Rossi, “Bitumen and bitumen modification: A review on latest advances,” Applied Sciences (Switzerland), vol. 9, no. 4. MDPI AG, Feb. 20, 2019. doi: 10.3390/app9040742.

[21]     V. v. Yadykina, S. N. Navolokina, and A. M. Gridchin, “The dependence of the modified bitumen properties on the amount of vinyl acetate in the sevilen composition,” in Materials Science Forum, 2020, vol. 974 MSF, pp. 175–180. doi: 10.4028/www.scientific.net/MSF.974.175.

[22]     I. B. Joohari and F. Giustozzi, “Effect of different Vinyl-Acetate contents in hybrid SBS-EVA modified bitumen 1.”

[23]     A. Yuliestyan, A. A. Cuadri, M. García-Morales, and P. Partal, “Selection of ethylene-vinyl-acetate properties for modified bitumen with enhanced end-performance,” Rheologica Acta, vol. 57, no. 1, pp. 71–82, Jan. 2018, doi: 10.1007/s00397-017-1057-5.

[24]     N. Saboo and P. Kumar, “Optimum Blending Requirements for EVA Modified Binder,” in Transportation Research Procedia, 2016, vol. 17, pp. 98–106. doi: 10.1016/j.trpro.2016.11.065.

[25]     Tony. McNally and Petra. Pötschke, Polymer modified bitumen: Properties and Characterisation. Woodhead Pub, 2011.

[26]     N. Kunanusont, B. Sangpetngam, and A. Somwangthanaroj, “Asphalt incorporation with ethylene vinyl acetate (Eva) copolymer and natural rubber (nr) thermoplastic vulcanizates (tpvs): Effects of tpv gel content on physical and rheological properties,” Polymers (Basel), vol. 13, no. 9, May 2021, doi: 10.3390/polym13091397.

[27]     R. K. Padhan, A. A. Gupta, and A. Sreeram, “Effect of cross-linking agent on ethylene vinyl acetate/polyoctenamer modified bitumen,” Road Materials and Pavement Design, vol. 20, no. 7, pp. 1615–1623, 2019, doi: 10.1080/14680629.2018.1467335.

[28]     W. Q. Luo and J. C. Chen, “Preparation and properties of bitumen modified by EVA graft copolymer,” Construction and Building Materials, vol. 25, no. 4, pp. 1830–1835, Apr. 2011, doi: 10.1016/j.conbuildmat.2010.11.079.

[29]     N. Mashaan, M. Karim, F. Khodary, N. Saboo, and A. Milad, “Bituminous Pavement Reinforcement with Fiber: A Review,” CivilEng, vol. 2, no. 3, pp. 599–611, Jul. 2021, doi: 10.3390/civileng2030033.

[30]     M. Ertekin, “Aramid fibers,” in Fiber Technology for Fiber-Reinforced Composites, Elsevier, 2017, pp. 153–167. doi: 10.1016/B978-0-08-101871-2.00007-2.

[31]     R. H. Gong and X. Chen, “Technical Yarns,” in Handbook of Technical Textiles: Second Edition, vol. 1, Elsevier Inc., 2016, pp. 43–62. doi: 10.1016/B978-1-78242-458-1.00003-0.

[32]     M. D. Nazzal, P. Ahmad Al-Hosainat, S.-S. Kim, A. R. Abbas, and A. Hudaib, “Analysis of Aramid Synthetic Fibers in Asphalt Mixes on Local Roads Final Report,” 2021.

[33]     S. Badeli, A. Carter, and S. Saliani, “Effect of Short Aramid Fibers on Asphalt Performance,” 2017. [Online]. Available: http://substanceen.etsmtl.ca/effectshortaramidfibersasphalt/

[34]     A. Alnadish and Y. Aman, “Evaluation of aramid fibre-reinforced asphalt mixtures,” in Lecture Notes in Civil Engineering, vol. 9, Springer, 2019, pp. 1377–1388. doi: 10.1007/978-981-10-8016-6_99.

[35]     S. Majer and B. Budziński, “Influence of Aramid-Polyolefin Fibers on the Properties of Bituminous Mixtures,” IOP Conference Series: Materials Science and Engineering, vol. 1203, no. 3, p. 032093, Nov. 2021, doi: 10.1088/1757-899x/1203/3/032093.

[36]     H. Noorvand, S. C. Brockman, M. Mamlouk, and K. Kaloush, “Effect of Aramid Fibers on Balanced Mix Design of Asphalt Concrete,” CivilEng, vol. 3, no. 1, pp. 21–34, Dec. 2021, doi: 10.3390/civileng3010002.

[37]     D. Wiśniewski, M. Słowik, J. Kempa, A. Lewandowska, and J. Malinowska, “Assessment of impact of aramid fibre addition on the mechanical properties of selected asphalt mixtures,” Materials, vol. 13, no. 15, Aug. 2020, doi: 10.3390/ma13153302.

[38]     P. Apostolidis, X. Liu, C. G. Daniel, S. Erkens, and T. Scarpas, “Effect of synthetic fibres on fracture performance of asphalt mortar,” Road Materials and Pavement Design, vol. 21, no. 7, pp. 1918–1931, Oct. 2020, doi: 10.1080/14680629.2019.1574235.

[39]     C. G. Daniel, X. Liu, P. Apostolidis, S. Erkens, and A. Scarpas, “Impact of synthetic fibres on asphalt concrete mix,” Bituminous Mixtures and Pavements VII- Proceedings of the 7th International Conference on Bituminous Mixtures and Pavements, ICONFBMP 2019, no. May, pp. 709–711, 2019, doi: 10.1201/9781351063265-96.

[40]     C. G. Daniel, X. Liu, P. Apostolidis, S. M. J. G. Erkens, and A. Scarpas, “Low-temperature fracture behaviour of synthetic polymer-fibre reinforced warm mix asphalt,” in Green and Intelligent Technologies for Sustainable and Smart Asphalt Pavements, 1st ed., vol. 1, no. 3, Taylor & Francis, 2021, pp. 358–362. doi: https://doi.org/10.1201/9781003251125.

[41]     Eng. F. Montanelli and I. srl, “Fiber/Polymeric Compound for High Modulus Polymer Modified Asphalt (PMA),” Procedia – Social and Behavioral Sciences, vol. 104, pp. 39–48, Dec. 2013, doi: 10.1016/j.sbspro.2013.11.096.

[42]     S. A. Asif, N. Ahmed, A. Hayat, S. Hussan, F. Shabbir, and K. Mehmood, “Study of adhesion characteristics of different bitumen–aggregate combinations using bitumen bond strength test,” Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A, vol. 41, no. 5, pp. 430–440, Jul. 2018, doi: 10.1080/02533839.2018.1490205.

[43]     H. A. Omar, N. I. M. Yusoff, M. Mubaraki, and H. Ceylan, “Effects of moisture damage on asphalt mixtures,” Journal of Traffic and Transportation Engineering (English Edition), vol. 7, no. 5. Chang’an University, pp. 600–628, Oct. 01, 2020. doi: 10.1016/j.jtte.2020.07.001.

[44]     R. G. Hicks, National Research Council (U.S.). Transportation Research Board., American Association of State Highway and Transportation Officials., and United States. Federal Highway Administration., Moisture damage in asphalt concrete. Transportation Research Board, National Research Council, 1991.

[45]     J. R. Willis, R. West, C. Rodezno, G. Julian, and B. Prowell, “ENGINEERING PROPERTIES AND FIELD PERFORMANCE OF WARM MIX ASPHALT TECHNOLOGIES FINAL REPORT,” 2014.

[46]     A. Mehrara and A. Khodaii, “A review of state of the art on stripping phenomenon in asphalt concrete,” Construction and Building Materials, vol. 38, no. 424, pp. 423–442, 2013, doi: 10.1016/j.conbuildmat.2012.08.033.

[47]     Direktorat Jenderal Bina Marga Kementerian Pekerjaan Umum dan Perumahan Rakyat, “DIREKTORAT JENDERAL BINA MARGA SPESIFIKASI UMUM 2018,” 2018.

[48]     E. Danan Saputro, S. Widodo, and E. Sulandari, “ESTIMASI KADAR ASPAL OPTIMUM PADA HRS BERDASARKAN DATA HISTORIS PENELITIAN DI FAKULTAS TEKNIK UNIVERSITAS TANJUNGPURA.”

[49]     P. E. Bolzan and G. Huber, “Direct Tension Test Experiments,” 1993.

[50]     “Asphalt Concrete Response (ACRe),” 2001.

[51]     P. Apostolidis, X. Liu, A. Scarpas, C. Kasbergen, and M. F. C. van de Ven, “Advanced evaluation of asphalt mortar for induction healing purposes,” Construction and Building Materials, vol. 126, pp. 9–25, Nov. 2016, doi: 10.1016/j.conbuildmat.2016.09.011.

[52]     P. Apostolidis, X. Liu, G. C. Daniel, S. Erkens, and T. Scarpas, “Effect of synthetic fibres on fracture performance of asphalt mortar,” Road Materials and Pavement Design, vol. 21, no. 7, pp. 1918–1931, 2020, doi: 10.1080/14680629.2019.1574235.

[53]     “SUPERPLAST POLYMER COMPOUND HIGH PERFORMANCE POLYMER MODIFIED ASPHALT (PMA).”

[54]     “SUPERPLAST.1.”

 

 

Acknowledgments

The authors wish to acknowledge the support from Pelita Harapan University for this project under the project code of 082/LPPM-UPH/II/2021 and the support from PT. Enceha Pacific with the Superplast polymer material for this research.