SEISMIC LOAD REDUCTION ON THE BRIDGE OVER LIQUEFACTION VULNERABILITY ZONE BY LEAD RUBBER BEARING

A Zakariya1, A Rifa’i1,*, S Ismanti1

1Department of Civil and Environmental Engineering, Universitas Gadjah Mada, Sleman, Indonesia, 55281

1*Corresponding email: [email protected]

DOI: https://doi.org/10.20885/icsbe.vol4.art35

 

ABSTRACT

The Palu IV bridge collapsed after the 2018 Palu earthquake. Bridge failure is caused by moment force and buckling increasing simultaneously while liquefaction occurs. This study performs a simulation of the Kretek 2 Bridge by three models; pinned and roller support, bearing pad, and lead rubber bearing to understand seismic load reduction with different supports. The bridge load refers to SNI 1725:2016 and SNI 2833:2016. Site-specific response spectra are required due to near earthquake sources. The analysis result using MIDAS both bearing pads and lead rubber bearings show a significant reduction in beam forces. Axial forces, shear Y, shear Z, moment Y and moment Z, for bearing pad model were reduced to -10.79%, -7.28%, -74.59%, -65.51%, and -19.28%, respectively, whereas for lead rubber bearings model were reduced to -10.88%, +5.29%, -72.75%, -63.48%, and -7.34% respectively. However, the displacement in the bearing pad reaches 0.221m exceeding a boundary maximum of 0.050mm, so it cannot be used. Displacement of lead rubber bearing reaches 0.162m, which is still below 0.384mm. Thus, a lead rubber bearing used as a seismic isolation damper is appropriate for the Kretek 2 Bridge.

 

Keywords: bridge failure, bearing pad, lead rubber bearing, MIDAS, beam forces, displacement

 

REFERENCES

Mulchandani H K Pilani S Robertson I N Prevatt D O and Roueche D, 2019 StEER : Structural Extreme Event Reconnaissance Network PALU EARTHQUAKE StEER : Structural Extreme Event Reconnaissance Network 1, January.

Ghulam B R Desmaliana E and Widyaningsih E, 2021 Analisis Dinamik Jembatan Pelengkung (Studi Kasus : Jembatan Palu IV) Reka Racana J. Online Inst. Teknol. Nas. xx, x p. 1–14.

Imran I Santoso B Pramudito A and Zamad M K, 2019 Simulation of Palu IV Bridge Collapse using near-fault ground motions .

Iwasaki T, 1984 A Case History of Bridge Performance During Earthquakes in Japan A Case History of Bridge Performance During Earthquakes in Japan May.

Dash S R Bhattacharya S and Blakeborough A, 2010 Bending-buckling interaction as a failure mechanism of piles in liquefiable soils Soil Dyn. Earthq. Eng. 30, 1–2 p. 32–39.

Bhattacharya S and Madabhushi S P G, 2008 A critical review of methods for pile design in seismically liquefiable soils Bull. Earthq. Eng. 6, 3 p. 407–446.

Bhattacharya S Dash S R and Adhikari S, 2008 On the mechanics of failure of pile-supported structures in liquefiable deposits during earthquakes Curr. Sci. 94, 5 p. 605–611.

Yoshida N et al., 2007 Causes of showa bridge collapse in the 1964 niigata earthquake based on eyewitness testimony Soils Found. 47, 6 p. 1075–1087.

Direktorat Jenderal Bina Marga, 2021 Panduan Praktis Perencanaan Teknis Jembatan 02/M/BM/20 Jakarta: Direktorat Jenderal Bina Marga.

Direktorat Jenderal Bina Marga, 2021 Isolator Gempa Menggunakan Bantalan Karet Inti Timbal (Lead Rubber Bearing) untuk Jembatan SKh-1.7.47 Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat.

Nurdin S, 2021, Study Forensic Terhadap Kerusakan Struktur Akibat Likuifaksi Pada Gempa Palu 2018 di Sulawesi Tengah, Palu.

Budiharto P, 2021, Evaluasi Kinerja Struktur Jembatan Beruji Kabel Pasupati Bandung Berdasarkan Peraturan SNI 1725:2016 dan SNI 2833:2016 serta Analisis Nonlinier Pushover, Institut Teknologi Bandung.

Kerciku A A Bhattacharya S Lubkowski Z A and Burd H J, 2008 Failure of Showa Bridge During the 1964 Niigata Earthquake: Lateral Spreading or Buckling Instability? 14 th World Conf. Earthq. Eng. October 2014 p. 8.

Pusat Studi Gempa Nasional, 2017 Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017 Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat.

Badan Geologi, 2019 Atlas Zona Kerentanan Likuefaksi Indonesia Bandung: Kementerian Energi Sumber Daya Mineral.

Sari E K, 2017, Perancangan Fondasi Tiang Bor pada Jembatan Kretek 2 Bantul, Yogyakarta, Universitas Gadjah Mada.

Towhata I Wu W and Borja R I, 2008 Geotechnical Earthquake Engineering 1 .

Badan Standardisasi Nasional, 2008 SNI 3967- 2008 : Spesifikasi bantalan elastomer tipe polos dan tipe berlapis untuk perletakan jembatan 3967th ed. Jakarta.

Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2015 Pedoman Perancangan Bantalan Elastomer untuk Perletakan Jembatan 10/SE/M/20 Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat.

Magdatama, 2021 Magda Elastomer Bearing Jakarta: PT Magdatama Multi Usaha.

Bridgestone, 2015 Seismic Isolation Product Line-up Version 20, 1 Tokyo: Bridgestone Engineered Products of Asia Sdn Bhd.

Magdatama, 2021 Magda LRB 2 Jakarta: PT Magdatama Multi Usaha.

Saiful Islam A B M Jumaat M Z Hussain R R Hosen M A and Huda M N, 2015 Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building Comput. Concr. 16, 4 p. 503–529.

Zulkifli E, 2018, Modul Kuliah SI-6112 Rekayasa Jembatan : Bridge Dynamics, Bandung.

Setiawan K, 2022, Mengenal Lead Rubber Bearing (LRB) Produksi Dalam Negeri, Jakarta.

Delitriana A, 2022, Effektivitas Penggunaan LRB pada Struktur Jembatan, Bandung.

Ginting T J, 2019, Studi Parametrik Efektifitas Lead Rubber Bearing (LRB) Pada Jembatan Beton Bentang Menerus, Institut Teknologi Bandung.

Indra A V Suryanita R and Ismeddiyanto, 2016 Analisis Respons Dinamik Jembatan Rangka Baja Menggunakan Sistem Seismic Isolation Lead Rubber Bearing (LRB) Jom FTEKNIK 3, 1 p. 1–12.

Suryadi T Delitriana A Fukar Z and Tjendana R, 2020 Seismic isolation system of two hinged arch suspended-deck bridge: A case study on Kalikuto bridge-Indonesia E3S Web Conf. 156.

Akogul C and Celik O, 2008 Effect of Elastomeric Bearing Modeling Parameters on the Seismis Design of RC Highway Bridges with Precast Concrete Girders 14th World Conf.

Amin A Islam M and Ahamed M J, 2020 Base isolation of multi-storied building using lead rubber bearing ITEGAM- J. Eng. Technol. Ind. Appl. 6, 26.

Badan Standardisasi Nasional, 2016 SNI 1725:2016 Pembebanan untuk Jembatan 1725 .

Badan Standarisasi Nasional Indonesia, 2016 SNI 2833:2016 Perencanaan Jembatan Terhadap Beban Gempa 2833rd ed. Jakarta.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published.